
A little history 9

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 9

preparing to do in any case. Although not involved in the litigation, it was suggested to
FreeBSD that they should also move to 4.4BSD-Lite, which was done with the release of
FreeBSD release 2.0 in late 1994.

Now, in the early 21st century, FreeBSD is the best known of the BSD operating systems,
one that many consider to follow in the tradition of the CSRG. I can think of no greater
honour for the development team. It was developed on a shoestring budget, yet it
manages to outperform commercial operating systems by an order of magnitude.

The end of the UNIX wars
In the course of the FreeBSD project, a number of things have changed about UNIX. Sun
Microsystems moved from a BSD base to a System V base in the late 80s, a move that
convinced many people that BSD was dead and that System V was the future. Things
turned out differently: in 1992, AT&T sold USL to Novell, Inc., who had introduced a
product based on System V.4 called UnixWare. Although UnixWare has much better
specifications than SCO’s old System V.3 UNIX, it was never a success, and Novell
finally sold their UNIX operation to SCO. SCO itself was then bought out by Caldera
(which recently changed its name back to SCO), while the ownership of the UNIX trade
mark has passed to the Open Group. System V UNIX is essentially dead: current
commercial versions of UNIX have evolved so far since System V that they can’t be
considered the same system. By contrast, BSD is alive and healthy, and lives on in
FreeBSD, NetBSD, OpenBSD and Apple’s Mac OS X.

The importance of the AT&T code in the earlier versions of FreeBSD was certainly
overemphasized in the lawsuit. All of the disputed code was over 10 years old at the
time, and none of it was of great importance. In January 2002, Caldera released all
‘‘ancient’’ versions of UNIX under a BSD license. These specifically included all
versions of UNIX from which BSD was derived: the first to seventh editions of Research
UNIX and 32V, the predecessor to 3BSD. As a result, all versions of BSD, including
those over which the lawsuit was conducted, are now freely available.

Other free UNIX-like operating systems
FreeBSD isn’t the only free UNIX-like operating system available—it’s not even the best-
known one. The best-known free UNIX-like operating system is undoubtedly Linux, but
there are also a number of other BSD-derived operating systems. We’ll look at them first:

• 386/BSD was the original free BSD operating system, introduced by William F. Jolitz
in 1992. It never progressed beyond a test stage: instead, two derivative operating
systems arose, FreeBSD and NetBSD. 386/BSD has been obsolete for years.

• NetBSD is an operating system which, to the casual observer, is almost identical to
FreeBSD. The main differences are that NetBSD concentrates on hardware
independence, whereas FreeBSD concentrates on performance. FreeBSD also tries
harder to be easy to understand for a beginner. You can find more information about
NetBSD at http://www.NetBSD.org.

10 Chapter 1: Introduction

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 10

• OpenBSD is a spin-off of NetBSD that focuses on security. It’s also very similar to
FreeBSD. You can find more information at http://www.OpenBSD.org.

• Apple computer introduced Version 10 (X) of its Mac OS in early 2001. It is a big
deviation from previous versions of Mac OS: it is based on a Mach microkernel with
a BSD environment. The base system (Darwin) is also free. FreeBSD and Darwin
are compatible at the user source code level.

You could get the impression that there are lots of different, incompatible BSD versions.
In fact, from a user viewpoint they’re all very similar to each other, much more than the
individual distributions of Linux, which we’ll look at next.

FreeBSD and Linux
In 1991, Linus Torvalds, then a student in Helsinki, Finland, decided he wanted to run
UNIX on his home computer. At that time the BSD sources were not freely available,
and so Linus wrote his own version of UNIX, which he called Linux.

Linux is a superb example of how a few dedicated, clever people can produce an
operating system that is better than well-known commercial systems developed by a large
number of trained software engineers. It is better even than a number of commercial
UNIX systems.

Obviously, I prefer FreeBSD over Linux, or I wouldn’t be writing this book, but the
differences between FreeBSD and Linux are more a matter of philosophy rather than of
concept. Here are a few contrasts:

Table 1-1: Differences between FreeBSD and Linux

FreeBSD is a direct descendent of the
original UNIX, though it contains no
residual AT&T code.

Linux is a clone and never contained any
AT&T code.

FreeBSD is a complete operating system,
maintained by a central group of software
developers under the Concurrent Versions
System which maintains a complete histo-
ry of the project development. There is
only one distribution of FreeBSD.

Linux is a kernel, personally maintained by
Linus Torvalds and a few trusted compan-
ions. The non-kernel programs supplied
with Linux are part of a distribution, of
which there are several. Distributions are
not completely compatible with each other.

The FreeBSD development style empha-
sizes accountability and documentation of
changes.

The Linux kernel is maintained by a small
number of people who keep track of all
changes. Unofficial patches abound.

The kernel supplied with a specific release
of FreeBSD is clearly defined.

Linux distributions often have subtly differ-
ent kernels. The differences are not always
documented.

FreeBSD system documentation 13

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 13

If you’re running X, you can use a browser like mozilla to read the documents. If you
don’t hav e X running yet, use lynx. Both of these programs are included in the CD-ROM
distribution. To install them, use sysinstall, which is described on page 92.

lynx is not a complete substitute for complete web browsers such as mozilla: since it is
text-only, it is not capable of displaying the large majority of web pages correctly. It’s
good enough for reading most of the FreeBSD online documentation, however.

In each case, you start the browser with the name of the document, for example:

$ lynx /usr/share/doc/en/books/handbook/index.html
$ mozilla /usr/share/doc/en/books/handbook/index.html &

Enter the & after the invocation of mozilla to free up the window in which you invoke it:
mozilla opens its own window.

If you haven’t installed the documentation, you can still access it from the Live
Filesystem CD-ROM. Assuming the CD-ROM is mounted on /cdrom, choose the file
/cdrom/usr/share/doc/en/books/handbook/index.html.

Alternatively, you can print out the handbook. This is a little more difficult, and of course
you’ll lose the hypertext references, but you may prefer it in this form. To format the
handbook for printing, you’ll need a PostScript printer or ghostscript. See page 271 for
more details of how to print PostScript.

The printable version of the documentation doesn’t usually come with the CD-ROM
distribution. You can pick it up with ftp (see page 433) from
ftp://ftp.FreeBSD.ORG/pub/FreeBSD/doc/, which has the same directory structure as
described above. For example, you would download the handbook in PostScript form
from ftp://ftp.FreeBSD.ORG/pub/FreeBSD/doc/en/books/handbook/book.ps.bz2.

The online manual
The most comprehensive documentation on FreeBSD is the online manual, usually
referred to as the man pages. Nearly every program, file, library function, device or
interface on the system comes with a short reference manual explaining the basic
operation and various arguments. If you were to print it out, it would run to well over
8,000 pages.

When online, you view the man pages with the command man. For example, to learn
more about the command ls, type:

$ man ls
LS(1) FreeBSD Reference Manual LS(1)

NAME
ls - list directory contents

SYNOPSIS
ls [-ACFLRTacdfiloqrstu1] [file ...]

DESCRIPTION
For each operand that names a file of a type other than directory, ls

14 Chapter 1: Introduction

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 14

displays its name as well as any requested, associated information. For
each operand that names a file of type directory, ls displays the names.

(etc)

In this particular example, with the exception of the first line, the text in constant
width bold is not input, it’s the way it appears on the screen.

The online manual is divided up into sections numbered:

1. User commands

2. System calls and error numbers

3. Functions in the C libraries

4. Device drivers

5. File formats

6. Games and other diversions

7. Miscellaneous information

8. System maintenance and operation commands

9. Kernel interface documentation

In some cases, the same topic may appear in more than one section of the online manual.
For example, there is a user command chmod and a system call chmod(). In this case,
you can tell the man command which you want by specifying the section number:

$ man 1 chmod

This command displays the manual page for the user command chmod. References to a
particular section of the online manual are traditionally placed in parentheses in written
documentation. For example, chmod(1) refers to the user command chmod, and
chmod(2) means the system call.

This is fine if you know the name of the command and forgot how to use it, but what if
you can’t recall the command name? You can use man to search for keywords in the
command descriptions by using the -k option, or by starting the program apropos:

$ man -k mail
$ apropos mail

Both of these commands do the same thing: they show the names of the man pages that
have the keyword mail in their descriptions.

Alternatively, you may browse through the /usr/bin directory, which contains most of the
system executables. You’ll see lots of file names, but you don’t hav e any idea what they
do. To find out, enter one of the lines:

FreeBSD system documentation 15

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 15

$ cd /usr/bin; man -f *
$ cd /usr/bin; whatis *

Both of these commands do the same thing: they print out a one-line summary of the
purpose of the program:

$ cd /usr/bin; man -f *
a2p(1) - Awk to Perl translator
addftinfo(1) - add information to troff font files for use with groff
apply(1) - apply a command to a set of arguments
apropos(1) - search the whatis database
...etc

Printing man pages

If you prefer to have man pages in print, rather than on the screen, you can do this in two
different ways:

• The simpler way is to redirect the output to the spooler:

$ man ls | lpr

This gives you a printed version that looks pretty much like the original on the screen,
except that you may not get bold or underlined text.

• You can get typeset output with troff :

$ man -t ls | lpr

This gives you a properly typeset version of the man page, but it requires that your
spooling system understand PostScript—see page 271 for more details of printing
PostScript, even on printers that don’t understand PostScript.

GNU info
The Free Software Foundation has its own online hypertext browser called info. Many
FSF programs come with either no man page at all, or with an excuse for a man page
(gcc, for example). To read the online documentation, you need to browse the info files
with the info program, or from Emacs with the info mode. To start info, simply type:

$ info

In Emacs, enter CTRL-h i or ALT-x info. Whichever way you start info, you can get
brief introduction by typing h, and a quick command reference by typing ?.

16 Chapter 1: Introduction

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 16

Other documentation on FreeBSD
FreeBSD users have access to probably more top-quality documentation than just about
any other operating system. Remember that word UNIX is trademarked. Sure, the
lawyers tell us that we can’t refer to FreeBSD as UNIX, because UNIX belongs to the
Open Group. That doesn’t make the slightest difference to the fact that nearly every book
on UNIX applies more directly to FreeBSD than any other flavour of UNIX. Why?

Commercial UNIX vendors have a problem, and FreeBSD doesn’t help them: why should
people buy their products when you can get it free from the FreeBSD Project (or, for that
matter, from other free UNIX-like operating systems such as NetBSD, OpenBSD and
Linux)? One obvious reason would be ‘‘value-added features.’’ So they add features or
fix weak points in the system, put a copyright on the changes, and help lock their
customers in to their particular implementation. As long as the changes are really useful,
this is legitimate, but it does make the operating system less compatible with ‘‘standard
UNIX,’’ and the books about standard UNIX are less applicable.

In addition, many books are written by people with an academic background. In the
UNIX world, this means that they are more likely than the average user to have been
exposed to BSD. Many general UNIX books handle primarily BSD, possibly with an
additional chapter on the commercial System V version.

In Appendix A, Bibliography, you’ll find a list of books that I find worthwhile. I’d like to
single out some that I find particularly good, and that I frequently use myself:

• UNIX Power Tools, by Jerry Peek, Tim O’Reilly, and Mike Loukides, is a superb
collection of interesting information, including a CD-ROM. Recommended for
ev erybody, from beginners to experts.

• UNIX for the Impatient, by Paul W. Abrahams and Bruce R. Larson, is more similar
to this book, but it includes a lot more material on specific products, such as shells
and the Emacs editor.

• The UNIX System Administration Handbook, by Evi Nemeth, Garth Snyder, Scott
Seebass, and Trent R. Hein, is one of the best books on systems administration I have
seen. It covers a number different UNIX systems, including an older version of
FreeBSD.

There are also many active Internet groups that deal with FreeBSD. Read about them in
the online handbook.

Other documentation on FreeBSD 17

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 17

The FreeBSD community
FreeBSD was developed by a world-wide group of developers. It could not have
happened without the Internet. Many of the key players have nev er even met each other
in person; the main means of communication is via the Internet. If you have any kind of
Internet connection, you can participate as well. If you don’t hav e an Internet connection,
it’s about time you got one. The connection doesn’t hav e to be complete: if you can
receive email, you can participate. On the other hand, FreeBSD includes all the software
you need for a complete Internet connection, not the very limited subset that most PC-
based ‘‘Internet’’ packages offer you.

Mailing lists
As it says in the copyright, FreeBSD is supplied as-is, without any support liability. If
you’re on the Internet, you’re not alone, however. Liability is one thing, but there are
plenty of people prepared to help you, most for free, some for fee. A good place to start
is with the mailing lists. There are a number of mailing lists that you can join. Some of
the more interesting ones are:

• FreeBSD-questions@FreeBSD.org is the list to which you may send general
questions, in particular on how to use FreeBSD. If you have difficulty understanding
anything in this book, for example, this is the right place to ask. It’s also the list to
use if you’re not sure which is the most appropriate.

• FreeBSD-newbies@FreeBSD.org is a list for newcomers to FreeBSD. It’s intended
for people who feel a little daunted by the system and need a bit of reassurance. It’s
not the right place to ask any kind of technical question.

• FreeBSD-hackers@FreeBSD.org is a technical discussion list.

• FreeBSD-current@FreeBSD.org is an obligatory list for people who run the
development version of FreeBSD, called FreeBSD-CURRENT.

• FreeBSD-stable@FreeBSD.org is a similar list for people who run the more recent
stable version of FreeBSD, called FreeBSD-STABLE. We’ll talk about these versions
on page 582. Unlike the case for FreeBSD-CURRENT users, it’s not obligatory for
FreeBSD-STABLE users to subscribe to FreeBSD-stable.

You can find a complete list of FreeBSD mailing lists on the web site, currently at
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/eresources.html. This
address is part of the online handbook and may change when the handbook is modified;
follow the link Mailing Lists from http://www.FreeBSD.org/ if it is no longer valid, or if
you can’t be bothered typing in the URI.

The mailing lists are run by mailman (in the Ports Collection). Join them via the web
interface mentioned above. You will receive a mail message from mailman asking you to
confirm your subscription by replying to the message. You don’t need to put anything in

18 Chapter 1: Introduction

30 June 2003, 16:10:29 The Complete FreeBSD (introduction.mm), page 18

the reply: the reply address is used once only, and you’re the only person who will ever
see it, so the system knows that it’s you by the fact that you replied at all. You also have
the option of confirming via a web interface with a specially generated URI. Similar
considerations apply in this case.

FreeBSD mailing lists can have a very high volume of traffic. The FreeBSD-questions
mailing list, for example, has thousands of subscribers, and many of them are themselves
mailing lists. It receives over a hundred messages every day. That’s about a million
messages a day in total for just one mailing list, so when you sign up for a mailing list, be
sure to read the charter. You can find the URI from the mailman confirmation message.
It’s also a good idea to ‘‘lurk’’ (listen, but not say anything) on the mailing list a while
before posting anything: each list has its own traditions.

When submitting a question to FreeBSD-questions, consider the following points:

1. Remember that nobody gets paid for answering a FreeBSD question. They do it of
their own free will. You can influence this free will positively by submitting a well-
formulated question supplying as much relevant information as possible. You can
influence this free will negatively by submitting an incomplete, illegible, or rude
question. It’s perfectly possible to send a message to FreeBSD-questions and not get
an answer even if you follow these rules. It’s much more possible to not get an
answer if you don’t.

2. Not ev erybody who answers FreeBSD questions reads every message: they look at
the subject line and decide whether it interests them. Clearly, it’s in your interest to
specify a subject. ‘‘FreeBSD problem’’ or ‘‘Help’’ aren’t enough. If you provide no
subject at all, many people won’t bother reading it. If your subject isn’t specific
enough, the people who can answer it may not read it.

3. When sending a new message, well, send a new message. Don’t just reply to some
other message, erase the old content and change the subject line. That leaves an In-
Reply-To: header which many mail readers use to thread messages, so your message
shows up as a reply to some other message. People often delete messages a whole
thread at a time, so apart from irritating people, you also run a chance of having the
message deleted unread.

4. Format your message so that it is legible, and PLEASE DON’T SHOUT!!!!!. It’s
really painful to try to read a message written full of typos or without any line breaks.
A lot of badly formatted messages come from bad mailers or badly configured
mailers. The following mailers are known to send out badly formatted messages
without you finding out about them:

Eudora
exmh
Microsoft Exchange
Microsoft Internet Mail
Microsoft Outlook
Netscape

Mailing lists 19

30 June 2003, 16:10:29 The Complete FreeBSD (introduction.mm), page 19

As you can see, the mailers in the Microsoft world are frequent offenders. If at all
possible, use a UNIX mailer. If you must use a mailer under Microsoft environments,
make sure it is set up correctly. Try not to use MIME: a lot of people use mailers
which don’t get on very well with MIME.

For further information on this subject, check out http://www.lemis.com/email.html.

5. Make sure your time and time zone are set correctly. This may seem a little silly,
since your message still gets there, but many of the people you are trying to reach get
several hundred messages a day. They frequently sort the incoming messages by
subject and by date, and if your message doesn’t come before the first answer, they
may assume they missed it and not bother to look.

6. Don’t include unrelated questions in the same message. Firstly, a long message tends
to scare people off, and secondly, it’s more difficult to get all the people who can
answer all the questions to read the message.

7. Specify as much information as possible. This is a difficult area: the information you
need to submit depends on the problem. Here’s a start:

• If you get error messages, don’t say ‘‘I get error messages’’, say (for example) ‘‘I
get the error message No route to host’’.

• If your system panics, don’t say ‘‘My system panicked’’, say (for example) ‘‘my
system panicked with the message free vnode isn’t’’.

• If you have difficulty installing FreeBSD, please tell us what hardware you have,
particularly if you have something unusual.

• If, for example, you have difficulty getting PPP to run, describe the configuration.
Which version of PPP do you use? What kind of authentication do you have? Do
you have a static or dynamic IP address? What kind of messages do you get in the
log file? See Chapter 20, Configuring PPP, for more details in this particular
case.

8. If you don’t get an answer immediately, or if you don’t even see your own message
appear on the list immediately, don’t resend the message. Wait at least 24 hours. The
FreeBSD mailer offloads messages to a number of subordinate mailers around the
world. Usually the messages come through in a matter of seconds, but sometimes it
can take sev eral hours for the mail to get through.

9. If you do all this, and you still don’t get an answer, there could be other reasons. For
example, the problem is so complicated that nobody knows the answer, or the person
who does know the answer was offline. If you don’t get an answer after, say, a week,
it might help to re-send the message. If you don’t get an answer to your second
message, though, you’re probably not going to get one from this forum. Resending
the same message again and again will only make you unpopular.

20 Chapter 1: Introduction

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 20

How to follow up to a question
Often you will want to send in additional information to a question you have already sent.
The best way to do this is to reply to your original message. This has three advantages:

1. You include the original message text, so people will know what you’re talking about.
Don’t forget to trim unnecessary text, though.

2. The text in the subject line stays the same (you did remember to put one in, didn’t
you?). Many mailers will sort messages by subject. This helps group messages
together.

3. The message reference numbers in the header will refer to the previous message.
Some mailers, such as mutt, can thread messages, showing the exact relationships
between the messages.

There are more suggestions, in particular for answering questions, at
http://www.lemis.com/questions.html. See also Chapter 26, Electronic mail: clients for
more information about sending mail messages. You may also like to check out the
FreeBSD web site at http://www.FreeBSD.org/ and the support page at
http://www.FreeBSD.org/support.html.

In addition, a number of companies offer support for FreeBSD. See the web page
http://www.FreeBSD.org/commercial/consulting_bycat.html for some possibilities.

Unsubscribing from the mailing lists
There’s a lot of traffic on the mailing lists, particularly on FreeBSD-questions. You
may find you can’t take it and want to get out again. Again, you unsubscribe from the list
either via the web or via a special mail address, not by sending mail to the the list. Each
message you get from the mailing lists finishes with the following text:

freebsd-questions@freebsd.org mailing list
http://lists.freebsd.org/mailman/listinfo/freebsd-questions
To unsubscribe, send any mail to "freebsd-questions-unsubscribe@freebsd.org"

Don’t be one of those people who send the unsubscribe request to the mailing list instead.

User groups
But how about meeting FreeBSD users face to face? There are a number of user groups
around the world. If you live in a big city, chances are that there’s one near you. Check
http://www.FreeBSD.org/support.html#user for a list. If you don’t find one, consider
taking the initiative and starting one.

In addition, USENIX holds an annual conference, the BSDCon, which deals with
technical aspects of the BSD operating systems. It’s also a great opportunity to get to
know other users from around the world. If you’re in Europe, there is also a BSDCon
Europe, which at the time of writing was not run by USENIX. See
http://www.eurobsdcon.org for more details.

Mailing lists 21

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 21

Repor ting bugs
If you find something wrong with FreeBSD, we want to know about it, so that we can fix
it. To report a bug, use the send-pr program to send it as a mail message.

There used to be a web form at http://www.FreeBSD.org/send-pr.html, but it has been
closed down due to abuse.

The Berkeley daemon
The little daemon at the right symbolizes BSD. It is
included with kind permission of Marshall Kirk McKusick,
one of the leading members of the former Computer
Sciences Research Group at the University of California at
Berkeley, and owner of the daemon’s copyright. Kirk also
wrote the foreword to this book.

The daemon has occasionally given rise to a certain amount
of confusion. In fact, it’s a joking reference to processes that
run in the background—see Chapter 8, Taking control, page
150, for a description. The outside world occasionally sees
things differently, as the following story indicates:

Newsgroups: alt.humor.best-of-usenet
Subject: [comp.org.usenix] A Great Daemon Story

From: Rob Kolstad <kolstad@bsdi.com>
Newsgroups: comp.org.usenix
Subject: A Great Daemon Story

Linda Branagan is an expert on daemons. She has a T-shirt that sports the daemon in
tennis shoes that appears on the cover of the 4.3BSD manuals and The Design and
Implementation of the 4.3BSD UNIX Operating System by S. Leffler, M. McKusick, M.
Karels, J. Quarterman, Addison Wesley Publishing Company, Reading, MA 1989.

She tells the following story about wearing the 4.3BSD daemon T-shirt:

Last week I walked into a local ‘‘home style cookin’ restaurant/watering hole’’ in
Te xas to pick up a take-out order. I spoke briefly to the waitress behind the counter,
who told me my order would be done in a few minutes.

So, while I was busy gazing at the farm implements hanging on the walls, I was
approached by two ‘‘natives.’’ These guys might just be the original Texas rednecks.

‘‘Pardon us, ma’am. Mind if we ask you a question?’’

Well, people keep telling me that Texans are real friendly, so I nodded.

‘‘Are you a Satanist?’’

Well, at least they didn’t ask me if I liked to party.

‘‘Uh, no, I can’t say that I am.’’

22 Chapter 1: Introduction

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 22

‘‘Gee, ma’am. Are you sure about that?’’ they asked.

I put on my biggest, brightest Dallas Cowboys cheerleader smile and said, ‘‘No, I’m
positive. The closest I’ve ever come to Satanism is watching Geraldo.’’

‘‘Hmmm. Interesting. See, we was just wondering why it is you have the lord of
darkness on your chest there.’’

I was this close to slapping one of them and causing a scene—then I stopped and
noticed the shirt I happened to be wearing that day. Sure enough, it had a picture of a
small, devilish-looking creature that has for some time now been associated with a
certain operating system. In this particular representation, the creature was wearing
sneakers.

They continued: ‘‘See, ma’am, we don’t exactly appreciate it when people show off
pictures of the devil. Especially when he’s lookin’ so friendly.’’

These idiots sounded terrifyingly serious.

Me: ‘‘Oh, well, see, this isn’t really the devil, it’s just, well, it’s sort of a mascot.

Native: ‘‘And what kind of football team has the devil as a mascot?’’

Me: ‘‘Oh, it’s not a team. It’s an operating—uh, a kind of computer.’’

I figured that an ATM machine was about as much technology as these guys could
handle, and I knew that if I so much as uttered the word ‘‘UNIX’’ I would only make
things worse.

Native: ‘‘Where does this satanical computer come from?’’

Me: ‘‘California. And there’s nothing satanical about it really.’’

Somewhere along the line here, the waitress noticed my predicament—but these guys
probably outweighed her by 600 pounds, so all she did was look at me sympathetically
and run off into the kitchen.

Native: ‘‘Ma’am, I think you’re lying. And we’d appreciate it if you’d leave the
premises now.’’

Fortunately, the waitress returned that very instant with my order, and they agreed that
it would be okay for me to actually pay for my food before I left. While I was at the
cash register, they amused themselves by talking to each other.

Native #1: ‘‘Do you think the police know about these devil computers?’’

Native #2: ‘‘If they come from California, then the FBI oughta know about ’em.’’

They escorted me to the door. I tried one last time: ‘‘You’re really blowing this all out
of proportion. A lot of people use this ‘kind of computers.’ Universities, researchers,
businesses. They’re actually very useful.’’

Big, big, big mistake. I should have guessed at what came next.

Native: ‘‘Does the government use these devil computers?’’

Me: ‘‘Yes.’’

Another big boo-boo.

Native: ‘‘And does the government pay for ’em? With our tax dollars?’’

The Berkeley daemon 23

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 23

I decided that it was time to jump ship.

Me: ‘‘No. Nope. Not at all. Your tax dollars never entered the picture at all. I
promise. No sir, not a penny. Our good Christian congressmen would never let
something like that happen. Nope. Never. Bye.’’

Te xas. What a country.

The daemon tradition goes back quite a way. As recently as 1996, after the publication of
the first edition of this book, the following message went through the FreeBSD-chat
mailing list:

To: "Jonathan M. Bresler" <jmb@freefall.freebsd.org>
Cc: obrien@antares.aero.org (Mike O’Brien),

joerg_wunsch@uriah.heep.sax.de,
chat@FreeBSD.org, juphoff@tarsier.cv.nrao.edu

Date: Tue, 07 May 1996 16:27:20 -0700
Sender: owner-chat@FreeBSD.org

> details and gifs PLEASE!

If you insist. :-)

Sherman, set the Wayback Machine for around 1976 or so (see Peter Salus’ A
Quarter Century of UNIX for details), when the first really national UNIX meeting was
held in Urbana, Illinois. This would be after the ‘‘forty people in a Brooklyn
classroom’’ meeting held by Mel Ferentz (yeah I was at that too) and the more-or-less
simultaneous West Coast meeting(s) hosted by SRI, but before the UNIX Users Group
was really incorporated as a going concern.

I knew Ken Thompson and Dennis Ritchie would be there. I was living in
Chicago at the time, and so was comic artist Phil Foglio, whose star was just beginning
to rise. At that time I was a bonded locksmith. Phil’s roommate had unexpectedly
split town, and he was the only one who knew the combination to the wall safe in their
apartment. This is the only apartment I’ve ever seen that had a wall safe, but it sure did
have one, and Phil had some stuff locked in there. I didn’t hold out much hope, since
safes are far beyond where I was (and am) in my locksmithing sphere of competence,
but I figured ‘‘no guts no glory’’ and told him I’d giv e it a whack. In return, I told him,
he could do some T-shirt art for me. He readily agreed.

Wonder of wonders, this safe was vulnerable to the same algorithm that Master
locks used to be susceptible to. I opened it in about 15 minutes of manipulation. It
was my greatest moment as a locksmith and Phil was overjoyed. I went down to my
lab and shot some Polaroid snaps of the PDP-11 system I was running UNIX on at the
time, and gav e it to Phil with some descriptions of the visual puns I wanted: pipes,
demons with forks running along the pipes, a ‘‘bit bucket’’ named /dev/null, all that.

What Phil came up with is the artwork that graced the first decade’s worth of
‘‘UNIX T-shirts,’’ which were made by a Ma and Pa operation in a Chicago suburb.
They turned out transfer art using a 3M color copier in their basement. Hence, the
PDP-11 is reversed (the tape drives are backwards) but since Phil left off the front
panel, this was hard to tell. His trademark signature was photo-reversed, but was

24 Chapter 1: Introduction

30 June 2003, 15:06:40 The Complete FreeBSD (introduction.mm), page 24

recopied by the T-shirt people and ‘‘re-forwardized,’’ which is why it looks a little
funny compared to his real signature.

Dozens and dozens of these shirts were produced. Bell Labs alone accounted for
an order of something like 200 for a big picnic. However, only four (4) REAL
originals were produced: these have a distinctive red collar and sleeve cuff. One went
to Ken, one to Dennis, one to me, and one to my then-wife. I now possess the latter
two shirts. Ken and Dennis were presented with their shirts at the Urbana conference.

People ordered these shirts direct from the Chicago couple. Many years later,
when I was living in LA, I got a call from Armando Stettner, then at DEC, asking
about that now-famous artwork. I told him I hadn’t talked to the Illinois T-shirt makers
in years. At his request I called them up. They’d folded the operation years ago and
were within days of discarding all the old artwork. I requested its return, and duly
received it back in the mail. It looked strange, seeing it again in its original form, a
mirror image of the shirts with which I and everyone else were now familiar.

I sent the artwork to Armando, who wanted to give it to the Ultrix marketing
people. They came out with the Ultrix poster that showed a nice shiny Ultrix machine
contrasted with the chewing-gum-and-string PDP-11 UNIX people were familiar with.
They still have the artwork, so far as I know.

I no longer recall the exact contents of the letter I sent along with the artwork. I
did say that as far as I knew, Phil had no residual rights to the art, since it was a ‘work
made for hire’, though nothing was in writing (and note this was decades before the
new copyright law). I do not now recall if I explicitly assigned all rights to DEC.
What is certain is that John Lassiter’s daemon, whether knowingly borrowed from the
original, or created by parallel evolution, postdates the first horde of UNIX daemons by
at least a decade and probably more. And if Lassiter’s daemon looks a lot like a Phil
Foglio creation, there’s a reason.

I hav e never scanned in Phil’s artwork; I’ve hardly ever scanned in anything, so I
have no GIFs to show. But I have some very very old UNIX T-shirts in startlingly
good condition. Better condition than I am at any rate: I no longer fit into either of
them.

Mike O’Brien
creaky antique

Note the date of this message: it appeared since the first edition of this book. Since then,
the daemon image has been scanned in, and you can find a version at
http://www.mckusick.com/beastie/shirts/usenix.html.

If things go wrong 81

28 July 2003, 15:08:04 The Complete FreeBSD (install.mm), page 81

Incorrect boot installation
It’s possible to forget to install the bootstrap, or even to wipe it the existing bootstrap.
That sounds like a big problem, but in fact it’s easy enough to recover from. Refer to the
description of the boot process on page 529, and boot from floppy disk or CD-ROM.
Interrupt the boot process with the space bar. You might see:

BTX loader 1.00 BTX version is 1.01
BIOS drive A: is disk0
BIOS drive C: is disk1
BIOS drive D: is disk1
BIOS 639kB/130048kB available memory

FreeBSD/i386 bootstrap loader, Revision 0.8
(grog@freebie.example.com, Thu Jun 13 13:06:03 CST 2002)
Loading /boot/defaults/loader.conf

Hit [Enter] to boot immediately, or any other key for command prompt.
Booting [kernel] in 6 seconds... press space bar here
ok unload unload the current kernel
ok set currdev disk1s1a and set the location of the new one
ok load /boot/kernel/kernel load the kernel
ok boot then start it

This boots from the drive /dev/ad0s1a, assuming that you are using IDE drives. The
correspondence between the name /dev/ad0s1a and disk1s1a goes via the information at
the top of the example: BTX only knows the BIOS names, so you’d normally be looking
for the first partition on drive C:. After booting, install the correct bootstrap with
bsdlabel -B or boot0cfg, and you should be able to boot from hard disk again.

Geometr y problems
Things might continue a bit further: you elect to install booteasy, and when you boot, you
get the Boot Manager prompt, but it just prints F? at the boot menu and won’t accept any
input. In this case, you may have set the hard disk geometry incorrectly in the partition
editor when you installed FreeBSD. Go back into the partition editor and specify the
correct geometry for your hard disk. You may need to reinstall FreeBSD from the
beginning if this happens.

It used to be relatively common that sysinstall couldn’t calculate the correct geometry for
a disk, and that as a result you could install a system, but it wouldn’t boot. Since those
days, sysinstall has become a lot smarter, but it’s still barely possible that you’ll run into
this problem.

If you can’t figure out the correct geometry for your machine, and even if you don’t want
to run Microsoft on your machine, try installing a small Microsoft partition at the
beginning of the disk and install FreeBSD after that. The install program sees the
Microsoft partition and tries to infer the correct geometry from it, which usually works.
After the partition editor has accepted the geometry, you can remove the Microsoft
partition again. If you are sharing your machine with Microsoft, make sure that the
Microsoft partition is before the FreeBSD partition.

82 Chapter 5: Installing FreeBSD

28 July 2003, 15:08:04 The Complete FreeBSD (install.mm), page 82

Alternatively, if you don’t want to share your disk with any other operating system, select
the option to use the entire disk (a in the partition editor). You’re less likely to have
problems with this option.

System hangs during boot
A number of problems may lead to the system hanging during the boot process. All the
known problems have been eliminated, but there’s always the chance that something new
will crop up. In general, the problems are related to hardware probes, and the most
important indication is the point at which the boot failed. It’s worth repeating the boot
with the verbose flag: again, refer to the description of the boot process on page 529.
Interrupt the boot process with the space bar and enter:

Hit [Enter] to boot immediately, or any other key for command prompt.
Booting [kernel] in 6 seconds... press space bar here
ok set boot_verbose set a verbose boot
ok boot then continue

This flag gives you additional information that might help diagnose the problem. See
Chapter 29 for more details of what the output means.

If you’re using ISA cards, you may need to reconfigure the card to match the kernel, or
change the file /boot/device.hints to match the card settings. See the example on page
608. Older versions of FreeBSD used to have a program called UserConfig to perform
this function, but it is no longer supported.

System boots, but doesn’t run correctly
If you get the system installed to the point where you can start it, but it doesn’t run quite
the way you want, don’t reinstall. In most cases, reinstallation won’t help. Instead, try to
find the cause of the problem—with the aid of the FreeBSD-questions mailing list if
necessary—and fix the problem.

Root file system fills up
You might find that the installation completes successfully, and you get your system up
and running, but almost before you know it, the root file system fills up. This is relatively
unlikely if you follow my recommendation to have one file system for /, /usr and /var,
but if you follow the default recommendations, it’s a possibility. It could be, of course,
that you just haven’t made it big enough—FreeBSD root file systems have got bigger
over the years. In the first edition of this book I recommended 32 MB ‘‘to be on the safe
side.’’ Now adays the default is 128 MB.

On the other hand, maybe you already have an 128 MB root file system, and it still fills
up. In this case, check where you have put your /tmp and /var file systems. There’s a
good chance that they’re on the root file system, and that’s why it’s filling up.

Alter native installation methods 89

30 June 2003, 15:06:40 The Complete FreeBSD (install.mm), page 89

Figure 5-17: Specifying NFS file system

The only required directory is base. You can include as many other directories as you
want, but be sure to maintain the directory structure. In other words, if you also wanted
to install XF86336 and manpages, you would copy them to C:\FREEBSD\XF86336 and
C:\FREEBSD\MANPAGES.

Creating floppies for a floppy installation
Installation from floppy disk is definitely the worst choice you have. You will need
nearly 50 floppies for the minimum installation, and about 250 for the complete
installation. The chance of one of them being bad is high. Most problems on a floppy
install can be traced to bad media, or differences in alignment between the media and the
drive in which they are used, so:

Before starting, format all floppies in the drive you intend to
use, even if they are preformatted.

The first two floppies you’ll need are the Kernel floppy and the MFS Root floppy, which
were described earlier.

In addition, you need at minimum as many floppies as it takes to hold all files in the base
directory, which contains the binary distribution. Read the file LAYOUT.TXT paying
special attention to the ‘‘Distribution format’’ section, which describes which files you
need.

If you’re creating the floppies on a FreeBSD machine, you can put ufs file systems on the
floppies instead:

90 Chapter 5: Installing FreeBSD

30 June 2003, 15:06:40 The Complete FreeBSD (install.mm), page 90

fdformat -f 1440 fd0.1440
bsdlabel -w fd0.1440 floppy3
newfs -t 2 -u 18 -l 1 -i 65536 /dev/fd0

Next, copy the files to the floppies. The distribution files are split into chunks that will fit
exactly on a conventional 1.44MB floppy. Copy one file to each floppy. Make very sure
to put the file base.inf on the first floppy; it is needed to find out how many floppies to
read.

The installation itself is straightforward enough: follow the instructions starting on page
63, select Floppy in the installation medium menu on page 76, then follow the prompts.

Installing additional software 93

30 June 2003, 15:06:40 The Complete FreeBSD (postinstall.mm), page 93

• Emacs is the GNU Emacs editor recommended in this book. We’ll look at it on page
139. Other popular editors are vi (in the base system) and vim (in the Ports
Collection).

• fetchmail is a program for fetching mail from POP mailboxes. We look at it on page
504.

• fvwm2 is a window manager that you may prefer to a full-blown desktop. We look at
it on page 118.

• galeon is a web browser. We’ll look at it briefly on page 418.

• ghostscript is a PostScript interpreter. It can be used to display PostScript on an X
display, or to print it out on a non-PostScript printer. We’ll look at it on page 273.

• gpg is an encryption program.

• gv is a utility that works with ghostscript to display PostScript on an X display. It
allows magnification and paging, both of which ghostscript does not do easily. We’ll
look at it on page 273.

• ispell is a spell check program.

• kde is the desktop environment recommended in this book. We’ll look at it in more
detail in Chapter 7, The tools of the trade.

• mkisofs is a program to create CD-R images. We look at it in chapter Chapter 13,
Writing CD-Rs.

• mutt is the mail user agent (MUA, or mail reader) recommended in Chapter 26,
Electronic mail: clients.

• postfix is the mail transfer agent (MTA) recommended in chapter Chapter 27,
Electronic mail: servers.

• xtset is a utility to set the title of an xterm window. It is used by the .bashrc file
installed with the instant-workstation package.

• xv is a program to display images, in particular jpeg and gif.

Why do I recommend these particular ports? Simple: because I like them, and I use them
myself. That doesn’t mean they’re the only choice, though. Others prefer the Gnome
window manager to kde, or the pine or elm MUAs to mutt, or the vim editor to Emacs.
This is the stuff of holy wars. See http://www.tuxedo.org/˜esr/jargon/html/entry/holy-
wars.html for more details.

Instant workstation
The ports mentioned in the previous section are included in the misc/instant-workstation
port, which installs typical software and configurations for a workstation and allows you
to be productive right away. At a later point you may find that you prefer other software,
in which case you can install it.

94 Chapter 6: Post-installation configuration

30 June 2003, 15:06:40 The Complete FreeBSD (postinstall.mm), page 94

It’s possible that the CD set you get will not include instant-workstation. That’s not such
a problem: you just install the individual ports from this list. You can also do this if you
don’t like the list of ports.

Changing the default shell for root
After installation, you may want to change the default shell for existing users to bash. If
you have installed instant-workstation, you should copy the file
/usr/share/skel/dot.bashrc to root’s home directory and call it .bashrc and .bash_pro-
file. First, start

presto# cp /usr/share/skel/dot.bashrc .bashrc
presto# ln .bashrc .bash_profile
presto# bash
=== root@presto (/dev/ttyp2) ˜ 1 -> chsh

The last command starts an editor with the following content:

#Changing user database information for root.
Login: root
Password:
Uid [#]: 0
Gid [# or name]: 0
Change [month day year]:
Expire [month day year]:
Class:
Home directory: /root
Shell: /bin/csh
Full Name: Charlie &
Office Location:
Office Phone:
Home Phone:
Other information:

Change the Shell line to:

Shell: /usr/local/bin/bash

Note that the bash shell is in the directory /usr/local/bin; this is because it is not part of
the base system. The standard shells are in the directory /bin.

Adding users
A freshly installed FreeBSD system has a number of users, nearly all for system
components. The only login user is root, and you shouldn’t log in as root. Instead you
should add at least one account for yourself. If you’re transferring a master.passwd file
from another system, you don’t need to do anything now. Otherwise select this item and
then the menu item User, and fill out the resulting menu like this:

Adding a hard disk 203

30 June 2003, 15:06:40 The Complete FreeBSD (disks.mm), page 203

This change of disk ID can be a problem. One of the first things you do with a new disk
is to create new disk labels and file systems. Both offer excellent opportunities to shoot
yourself in the foot if you choose the wrong disk: the result would almost certainly be the
complete loss of data on that disk. Even apart from such catastrophes, you’ll have to edit
/etc/fstab before you can mount any file systems that are on the disk. The alternatives are
to wire down the device names, or to change the SCSI IDs. In FreeBSD 5.0, you wire
down device names and busses by adding entries to the boot configuration file
/boot/device.hints. We’ll look at that on page 574.

Formatting the disk
Formatting is the process of rewriting every sector on the disk with a specific data pattern,
one that the electronics find most difficult to reproduce: if they can read this pattern, they
can read anything. Microsoft calls this a low-level format.1 Obviously it destroys any
existing data, so

If you have anything you want to keep, back it up before
formatting.

Most modern disks don’t need formatting unless they’re damaged. In particular,
formatting will not help if you’re having configuration problems, if you can’t get PPP to
work, or you’re running out of disk space. Well, it will solve the disk space problem, but
not in the manner you probably desire.

If you do need to format a SCSI disk, use camcontrol. camcontrol is a control program
for SCSI devices, and it includes a lot of useful functions that you can read about in the
man page. To format a disk, use the following syntax:

camcontrol format da1

Remember that formatting a disk destroys all data on the disk.
Before using the command, make sure that you need to do so:
there are relatively few cases that call for formatting a disk.
About the only reasons are if you want to change the physical
sector size of the disk, or if you are getting ‘‘medium format
corrupted’’ errors from the disk in response to read and write
requests.

FreeBSD can format only floppies and SCSI disks. In general it is no longer possible to
reformat ATA (IDE) disks, though some manufacturers have programs that can recover
from some data problems. In most cases, though, it’s sufficient to write zeros to the entire
disk:

dd if=/dev/zero of=/dev/ad1 bs=128k

If this doesn’t work, you may find formatting programs on the manufacturer’s web site.
You’ll probably need to run them under a Microsoft platform.

1. Microsoft also uses the term high-level format for what we call creating a file system.

204 Chapter 11: Disks

30 June 2003, 15:06:40 The Complete FreeBSD (disks.mm), page 204

Using sysinstall
If you can, use sysinstall to partition your disk. Looking at the dmesg output for our
new disk, we see:

da1 at sym1 bus 0 target 0 lun 0
da1: <SEAGATE ST15230W SUN4.2G 0738> Fixed Direct Access SCSI-2 device
da1: 20.000MB/s transfers (10.000MHz, offset 15, 16bit), Tagged Queueing Enabled
da1: 4095MB (8386733 512 byte sectors: 255H 63S/T 522C)

You see the standard installation screen (see Chapter 5, page 60). Select Index, then
Partition, and you see the following screen:

Figure 11-1: Disk selection menu

In this case, we want to partition /dev/da1, so we position the cursor on da1 (as shown)
and press Enter. We see the disk partition menu, which shows that the disk currently
contains three partitions:

• The first starts at offset 0, and has a length of 63. This is not unused, no matter what
the description says. It’s the partition table, padded to the length of a ‘‘track.’’

• The next partition takes up the bulk of the drive and is a Microsoft partition.

• Finally, we hav e 803 sectors left over as a result of the partitioning scheme.
Sometimes this can be much larger—I have seen values as high as 35 MB. This is
the price we pay for compatibility with PC BIOS partitioning.

We want a FreeBSD partition, not a Microsoft partition. At this point, we have a number
of choices:

Doing it the hard way 213

30 June 2003, 15:06:40 The Complete FreeBSD (disks.mm), page 213

start 2091453, size 6295133 (3073 Meg), flag 0
beg: cyl 351/ head 0/ sector 1;
end: cyl 413/ head 12/ sector 47

Are we happy with this entry? [n] y
The data for partition 3 is:
<UNUSED>
Do you want to change it? [n] Enter pressed
The data for partition 4 is:
sysid 165,(FreeBSD/NetBSD/386BSD)

start 47, size 8386539 (4094 Meg), flag 80 (active)
beg: cyl 0/ head 1/ sector 1;
end: cyl 413/ head 12/ sector 47

Do you want to change it? [n] y

The static data for the DOS partition 4 has been reinitialized to:
sysid 165,(FreeBSD/NetBSD/386BSD)

start 47, size 8386539 (4094 Meg), flag 80 (active)
beg: cyl 0/ head 1/ sector 1;
end: cyl 413/ head 12/ sector 47

Supply a decimal value for "sysid (165=FreeBSD)" [165] 0
Supply a decimal value for "start" [47] 0
Supply a decimal value for "size" [8386539] 0
Explicitly specify beg/end address ? [n] Enter pressed
<UNUSED>
Are we happy with this entry? [n] y
Do you want to change the active partition? [n] y
Supply a decimal value for "active partition" [1] 2
Are you happy with this choice [n] y

We haven’t changed the partition table yet. This is your last chance.
parameters extracted from in-core disklabel are:
cylinders=13726 heads=13 sectors/track=47 (611 blks/cyl)

Figures below won’t work with BIOS for partitions not in cyl 1
parameters to be used for BIOS calculations are:
cylinders=13726 heads=13 sectors/track=47 (611 blks/cyl)

Information from DOS bootblock is:
1: sysid 6,(Primary ’big’ DOS (> 32MB))

start 0, size 2091453 (1021 Meg), flag 0
beg: cyl 0/ head 0/ sector 1;
end: cyl 350/ head 12/ sector 47

2: sysid 165,(FreeBSD/NetBSD/386BSD)
start 2091453, size 6295133 (3073 Meg), flag 80 (active)

beg: cyl 351/ head 0/ sector 1;
end: cyl 413/ head 12/ sector 47

3: <UNUSED>
4: <UNUSED>
Should we write new partition table? [n] y

You’ll notice a couple of things here:

• Even though we created valid partitions 1 and 2, which cover the entire drive, fdisk
gave us the phantom partition 4 which covered the whole disk, and we had to remove
it.

• The cylinder numbers in the summary at the end don’t make any sense. We’ve
already calculated that the Microsoft partition goes from cylinder 0 to cylinder 3422
inclusive, and the FreeBSD partition goes from cylinder 3423 to cylinder 13725. But
fdisk says that the Microsoft partition goes from cylinder 0 to cylinder 350 inclusive,
and the FreeBSD partition goes from cylinder 351 to cylinder 413. What’s that all
about?

214 Chapter 11: Disks

30 June 2003, 15:06:40 The Complete FreeBSD (disks.mm), page 214

The problem here is overflow: once upon a time, the maximum cylinder value was
1023, and fdisk still thinks this is the case. The numbers we’re seeing here are the
remainder left by dividing the real cylinder numbers by 1024.

Labelling the disk
Once we have a valid PC BIOS partition table, we need to create the file systems. We
won’t look at the Microsoft partition in any more detail, but we still need to do some
more work on our FreeBSD slice (slice or PC BIOS partition 2). It’ll make life easier
here to remember a couple of things:

• From now on, we’re just looking at the slice, which we can think of as a logical disk.
Names like disk label really refer to the slice, but many standard terms use the word
disk, so we’ll continue to use them.

• All offsets are relative to the beginning of the slice, not the beginning of the disk.
Sizes also refer to the slice and not the disk.

The first thing we need is the disk (slice) label, which supplies general information about
the slice:

• The fact that it’s a FreeBSD slice.

• The size of the slice.

• The sizes, types and layout of the file systems.

• Some obsolete information about details like rotational speed of the disk and the
track-to-track switching time. This is still here for historical reasons only. It may go
aw ay soon.

The only information we need to input is the kind, size and locations of the partitions. In
this case, we have decided to create a file system on partition h (/dev/da1s2h) and swap
space on partition b (/dev/da1s1b). The swap space will be 512 MB, and the file system
will take up the rest of the slice. This is mainly tradition: traditionally data disks use the
h partition and not the a partition, so we’ll stick to that tradition, though there’s nothing
to stop you from using the a partition if you prefer. In addition, we need to define the c
partition, which represents the whole slice. In summary, the FreeBSD slice we want to
create looks like:

/dev/da1s2b: FreeBSD swap, 512 MB

/dev/da1s2h: /newhome file system, 2.5 GB

Figure 11-4: FreeBSD slice on second disk

Doing it the hard way 215

30 June 2003, 15:06:40 The Complete FreeBSD (disks.mm), page 215

bsdlabel
The program that writes the disk label used to be called disklabel. As FreeBSD migrated
to multiple platforms, this proved to be too generic: many hardware platforms have their
own disk label formats. For example, FreeBSD on SPARC64 uses the Sun standard
labels. On platforms which use the old BSD labels, such as the PC, the name was
changed to bsdlabel. On SPARC64 it is called sunlabel. On each platform, the
appropriate file is linked to the name disklabel, but some of the options have changed. In
addition, the output format now normally ignores a number of historical relics. It’s not as
warty as fdisk, but it can still give you a run for your money. You can usually ignore
most of the complexity, though. You can normally create a disk label with the single
command:

bsdlabel -w /dev/da1s2 auto

This creates the label with a single partition, c. You can look at the label with bsdlabel
without options:

bsdlabel /dev/da1s2
/dev/da0s2:
8 partitions:
size offset fstype [fsize bsize bps/cpg]
c: 6295133 0 unused 0 0 # "raw" part, don’t edit

At this point, the only partition you have is the ‘‘whole disk’’ partition c. You still need
to create partitions b and h and specify their location and size. Do this with bsdlabel -e,
which starts an editor with the output you see above. Simply add additional partitions:

8 partitions:
size offset fstype [fsize bsize bps/cpg]
c: 6295133 0 unused 0 0 # "raw" part, don’t edit
b: 1048576 0 swap 0 0
h: 5246557 1048576 unused 0 0

You don’t need to maintain any particular order, and you don’t need to specify that
partition h will be a file system. In the next step, newfs does that for you automatically.

Problems running bsdlabel
Using the old disklabel program used to be like walking through a minefield. Things
have got a lot better, but it’s possible that some problems are still hiding. Here are some
of the problems that have been encountered in the past, along with some suggestions
about what to do if you experience them:

• When writing a label (the -w option), you may find:

bsdlabel -w da1s2
bsdlabel: /dev/da1s2c: Undefined error: 0

This message may be the result of the kernel having out-of-date information about the
slice in memory. If this is the case, a reboot may help.

216 Chapter 11: Disks

30 June 2003, 15:06:40 The Complete FreeBSD (disks.mm), page 216

• No disk label on disk is straightforward enough. You tried to use bsdlabel to
look at the label before you had a label to look at.

• Label magic number or checksum is wrong! tells you that bsdlabel thinks it
has a label, but it’s inv alid. This could be the result of an incorrect previous attempt
to label the disk. It can be difficult to get rid of an incorrect label. The best thing to
do is to repartition the disk with the label in a different position, and then copy
/dev/zero to where the label used to be:

dd if=/dev/zero of=/dev/da1 bs=128k count=1

Then you can repartition again the way you want to have it.

• Open partition would move or shrink probably means that you have
specified incorrect values in your slice definitions. Check particularly that the c
partition corresponds with the definition in the partition table.

• write: Read-only file system means that you are trying to do something
invalid with a valid disk label. FreeBSD write protects the disk label, which is why
you get this message.

• In addition, you might get kernel messages like:

fixlabel: raw partition size > slice size
or
fixlabel: raw partitions offset != slice offset

The meanings of these messages should be obvious.

Creating file systems
Once we have a valid label, we need to create the file systems. In this case, there’s only
one file system, on /dev/da1s2h. Mercifully, this is easier:

newfs -U /dev/da1s2h
/dev/vinum/da1s2h: 2561.8MB (5246556 sectors) block size 16384, fragment size 2048

using 14 cylinder groups of 183.77MB, 11761 blks, 23552 inodes.
with soft updates

super-block backups (for fsck -b #) at:
160, 376512, 752864, 1129216, 1505568, 1881920, 2258272, 2634624, 3010976, 3387328,
3763680, 4140032, 4516384, 4892736

The -U flag tells newfs to enable soft updates, which we looked at on page 191.

Creating file systems 217

30 June 2003, 15:06:40 The Complete FreeBSD (disks.mm), page 217

Mounting the file systems
Finally the job is done. Well, almost. You still need to mount the file system, and to tell
the system that it has more swap. But that’s not much of a problem:

mkdir /newhome make sure we have a directory to mount on
mount /dev/da1s2h /newhome and mount it
swapon /dev/da1s2b
df show free capacity and mounted file systems
Filesystem 1024-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 19966 17426 944 95% /
/dev/ad0s1e 1162062 955758 113340 89% /usr
procfs 4 4 0 100% /proc
presto:/ 15823 6734 8297 45% /presto/root
presto:/usr 912271 824927 41730 95% /presto/usr
presto:/home 1905583 1193721 521303 70% /presto/home
presto:/S 4065286 3339635 563039 86% /S
/dev/da1s2h 2540316 2 2337090 0% /newhome
pstat -s show swap usage
Device 1K-blocks Used Avail Capacity Type
/dev/ad0s4b 524160 0 524160 0% Interleaved
/dev/da1s2b 524160 0 524160 0% Interleaved
Total 1048320 0 1048320 0%

This looks fine, but when you reboot the system, /newhome and the additional swap will
be gone. To ensure that they get mounted after booting, you need to add the following
lines to /etc/fstab:

/dev/da1s2b none swap sw 0 0
/dev/da1s2h /newhome ufs rw 0 0

Moving file systems
Very frequently, you add a new disk to a system because existing disks have run out of
space. Let’s consider the disk we have just added and assume that currently the files in
/home are physically located on the /usr file system, and that /home is a symbolic link to
/usr/home. We want to move them to the new file system and then rename it to /home.
Here’s what to do:

• Copy the files:

cd /home
tar cf - . | (cd /newhome; tar xvf - 2>/var/tmp/tarerrors)

This writes any error messages to the file /var/tmp/tarerrors. If you don’t do this, any
errors will get lost.

• Check /var/tmp/tarerrors and make sure that the files really made it to the right
place!

218 Chapter 11: Disks

30 June 2003, 15:06:40 The Complete FreeBSD (disks.mm), page 218

• Remove the old files:

rm -rf /usr/home

• In this case, /home was a symbolic link, so we need to remove it and create a
directory called /home:

rm /home
mkdir /home

You don’t need to do this if /home was already a directory (for example, if you’re
moving a complete file system).

• Modify /etc/fstab to contain a line like:

/dev/da1s2h /home ufs rw 0 0

• Unmount the /newhome directory and mount it as /home:

umount /newhome
mount /home

Recovering from disk data errors
Modern hard disks are a miracle in evolution. Today you can buy a 200 GB hard disk for
under $200, and it will fit in your shirt pocket. Thirty years ago, a typical disk drive was
the size of a washing machine and stored 20 MB. You would need 10,000 of them to
store 200 GB.

At the same time, reliability has gone up, but disks are still relatively unreliable devices.
You can achieve maximum reliability by keeping them cool, but sooner or later you are
going to run into some kind of problem. One kind is due to surface irregularities: the disk
can’t read a specific part of the surface.

Modern disks make provisions for recovering from such errors by allocating an alternate
sector for the data. IDE drives do this automatically, but with SCSI drives you have the
option of enabling or disabling reallocation. Usually reallocation is enabled when you
buy the disk, but occasionally it is not. When installing a new disk, you should check that
the parameters ARRE (Auto Read Reallocation Enable) and AWRE (Auto Write
Reallocation Enable) are turned on. For example, to check and set the values for disk
/dev/da1, you would enter:

camcontrol modepage da1 -m 1 -e

This command will start up your favourite editor (either the one specified in the EDITOR
environment variable, or vi by default) with the following data:

Recovering from disk data errors 219

30 June 2003, 15:06:40 The Complete FreeBSD (disks.mm), page 219

AWRE (Auto Write Reallocation Enbld): 0
ARRE (Auto Read Reallocation Enbld): 0
TB (Transfer Block): 1
EER (Enable Early Recovery): 0
PER (Post Error): 1
DTE (Disable Transfer on Error): 0
DCR (Disable Correction): 0
Read Retry Count: 41
Write Retry Count: 24

The values for AWRE and ARRE should both be 1. If they aren’t, as in this case, where
AWRE is 0, change the data with the editor, write it back, and exit. camcontrol writes the
data back to the disk and enables the option.

Note the last two lines in this example. They giv e the number of actual retries that this
drive has performed. You can reset these values too if you want; they will be updated if
the drive performs any additional retries.

30 June 2003, 15:06:40 The Complete FreeBSD (reset.mm), page 220

Installing FreeBSD on Vinum 237

28 July 2003, 19:53:36 The Complete FreeBSD (vinum.mm), page 237

Normal disk installations lay out overlapping disk partitions: the c partition overlaps all
the other partitions. You can do the same thing with a Vinum drive, which is also a
partition. You can then create subdisks in the Vinum drive corresponding in length and
position to the partitions. In the following diagram, each column represents the entire
disk. On the left there are four normal partitions. In the middle is the c partition, and on
the right is a Vinum drive partition:

da0s4b: swap

da0s4a: / file system

da0s4e: /usr file system

da0s4f: /var file system

da0s4c: entire disk da0s4h: vinum drive

Figure 12-9: Partition layout with Vinum

This layout shows three file system partitions and a swap partition, which is not the
layout recommended on page 68. We’ll look at the reasons for this below.

The shaded area at the top of the Vinum partition represents the configuration
information, which cuts into the swap partition and the bootstrap. To fix that, we redefine
the swap partition to start after the Vinum configuration information and to be a total of
281 sectors shorter, 265 sectors for the Vinum configuration and 16 sectors for the
bootstrap.

The swap partition isn’t normally the first partition on a drive, but you can create this
layout with sysinstall simply by creating the swap partition before any other partition.
Consider installing FreeBSD on a 4 GB drive. Create, in sequence, a swap partition of
256 MB, a root file system of 256 MB, a /usr file system of 2 GB, and a /var file system
to take up the rest. It’s important to create the swap partition at the beginning of the disk,
so you create that first. After installation, the output of bsdlabel looks like this:

a: 524288 524288 4.2BSD 2048 16384 32776 root file system
b: 524288 0 swap swap partition
c: 8385867 0 unused 0 0 # "raw" part, don’t edit
d: 4194304 1048576 4.2BSD 2048 16384 28512 /usr file system
e: 3142987 5242880 4.2BSD 2048 16384 28512 /var file system

This corresponds to the left and centre columns in the figure above. To convert to Vinum,
you need to:

• create a volume of type vinum that starts after the bootstrap in the c partition.

• shorten the swap partition by 281 sectors at the beginning.

238 Chapter 12: The Vinum Volume Manager

28 July 2003, 19:53:36 The Complete FreeBSD (vinum.mm), page 238

Boot in single user mode and remount the root file system (to make it read/write), mount
the /usr directory and run bsdlabel with the -e (edit label) option:

mount -u /
mount /usr
bsdlabel -e da0s4

See page 215 for more information about bsdlabel. You need to boot in single user mode
because otherwise the swap partition would be mounted, and you can’t change the size of
the swap partition when it’s mounted.

When you finish, the partition table should look like this (changed values in bold):

size offset fstype [fsize bsize bps/cpg]
a: 524288 524288 4.2BSD 2048 16384 32776 root file system
b: 524007 281 swap swap partition
c: 8385867 0 unused 0 0 # "raw" part, don’t edit
d: 4194304 1048576 4.2BSD 2048 16384 28512 /usr file system
e: 3142987 5242880 4.2BSD 2048 16384 28512 /var file system
h: 8385851 16 vinum Vinum drive

Be sure to shorten the length of the swap partition by 281 sectors, or it will overlap the
root partition and cause extreme data corruption when swap gets full, which might not
happen until months later.

The next step is to create the Vinum objects. The plexes and volumes are
straightforward: each plex is concatenated with a single subdisk, and the volume has a
single plex. It makes sense to give the volumes names that relate to the mount point.

Creating the subdisks requires a little more care. You can use the size values from the
bsdlabel output above directly in a Vinum configuration file, but since the Vinum drive
starts after the bootstrap, you need to subtract 16 (the length of the bootstrap) from the
offset values:

drive rootdev device /dev/da0s4h
volume root
plex org concat

a: 524288 524288 4.2BSD 2048 16384 32776
sd len 524288s driveoffset 524272s drive rootdev

volume swap
plex org concat

b: 524007 281 swap
sd len 524007s driveoffset 265s drive rootdev

volume usr
plex org concat

d: 4194304 1048576 4.2BSD 2048 16384 28512
sd len 4194304s driveoffset 1048560s drive rootdev

volume var
plex org concat

e: 3142987 5242880 4.2BSD 2048 16384 28512
sd len 3142987s driveoffset 5242864s drive rootdev

The comments are the corresponding lines from the bsdlabel output. They show the
corresponding values for size and offset. Run vinum create against this file, and confirm
that you have the volumes /, /usr and /var.

Next, ensure that you are set up to start Vinum with the new method. Ensure that you

Installing FreeBSD on Vinum 239

28 July 2003, 19:53:36 The Complete FreeBSD (vinum.mm), page 239

have the following lines in /boot/loader.conf, creating it if necessary:

vinum_load="YES"
vinum.autostart="YES"

Then reboot to single-user mode, start Vinum and run fsck against the volumes, using the
-n option to tell fsck not to correct any errors it finds. You should see something like
this:

fsck -n -t ufs /dev/vinum/usr
** /dev/vinum/usr (NO WRITE)
** Last Mounted on /usr
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
35323 files, 314115 used, 718036 free (4132 frags, 89238 blocks, 0.4% fragmentation)

If there are any errors, they will probably be because you have miscalculated size or
offset. You’ll see something like this:

fsck -n -t ufs /dev/vinum/usr
** /dev/vinum/usr (NO WRITE)
Cannot find file system superblock
/dev/vinum/usr: CANNOT FIGURE OUT FILE SYSTEM PARTITION

You need to do this in single-user mode because the volumes are shadowing file systems,
and it’s normal for open file systems to fail fsck, since some of the state is in buffer cache.

If all is well, remount the root file system read-write:

mount -u /

Then edit /etc/fstab to point to the new devices. For this example, /etc/fstab might
initially contain:

Device Mountpoint FStype Options Dump Pass#
/dev/da0s4a / ufs rw 1 1
/dev/da0s4b none swap sw 0 0
/dev/da0s4e /usr ufs rw 1 1
/dev/da0s4f /var ufs rw 1 1

Change it to reflect the Vinum volumes:

Device Mountpoint FStype Options Dump Pass#
/dev/vinum/swap none swap sw 0 0
/dev/vinum/root / ufs rw 1 1
/dev/vinum/usr /usr ufs rw 1 1
/dev/vinum/var /var ufs rw 1 1

Then reboot again to mount the root file system from /dev/vinum/root. You can also
optionally remove all the UFS partitions except the root partition. The loader doesn’t
know about Vinum, so it must boot from the UFS partition.

240 Chapter 12: The Vinum Volume Manager

28 July 2003, 19:53:36 The Complete FreeBSD (vinum.mm), page 240

Once you have reached this stage, you can add additional plexes to the volumes, or you
can extend the plexes (and thus the size of the file system) by adding subdisks to the
plexes, as discussed on page 229.

Recovering from drive failures
One of the purposes of Vinum is to be able to recover from hardware problems. If you
have chosen a redundant storage configuration, the failure of a single component will not
stop the volume from working. In many cases, you can replace the components without
down time.

If a drive fails, perform the following steps:

1. Replace the physical drive.

2. Partition the new drive. Some restrictions apply:

• If you have hot-plugged the drive, it must have the same ID, the Vinum drive
must be on the same partition, and it must have the same size.

• If you have had to stop the system to replace the drive, the old drive will not be
associated with a device name, and you can put it anywhere. Create a Vinum
partition that is at least large enough to take all the subdisks in their original
positions on the drive. Vinum currently does not compact free space when
replacing a drive. An easy way to ensure this is to make the new drive at least as
large as the old drive.

If you want to have this freedom with a hot-pluggable drive, you must stop Vinum
and restart it.

3. If you have restarted Vinum, create a new drive. For example, if the replacement
drive data3 is on the physical partition /dev/da3s1h, create a configuration file, say
configfile, with the single line

drive data3 device /dev/da3s1h

Then enter:

vinum create configfile

4. Start the plexes that were down. For example, vinum list might show:

vinum -> l -r test
V test State: up Plexes: 2 Size: 30 MB
P test.p0 C State: up Subdisks: 1 Size: 30 MB
P test.p1 C State: faulty Subdisks: 1 Size: 30 MB
S test.p0.s0 State: up PO: 0 B Size: 30 MB
S test.p1.s0 State: obsolete PO: 0 B Size: 30 MB
vinum -> start test.p1.s0
Reviving test.p1.s0 in the background
vinum -> vinum[295]: reviving test.p1.s0 this message appears after the prompt
vinum[295]: test.p1.s0 is up (some time later)

Backing up your data 253

30 June 2003, 15:06:40 The Complete FreeBSD (tapes.mm), page 253

Backup software
FreeBSD does not require special ‘‘backup software.’’ The base operating system
supplies all the programs you need. The tape driver is part of the kernel, and the system
includes a number of backup programs. The most popular are:

• tar, the tape archiver, has been around longer than anybody can remember. It is
particularly useful for data exchange, since everybody has it. There are even versions
of tar for Microsoft platforms. It’s also an adequate backup program.

• cpio is an alternative backup program. About its only advantage over tar is that it
can read cpio format archives.

• pax is another alternative backup program. It has the advantage that it can also read
and write tar and cpio archives.

• dump is geared more towards backups than towards archiving. It can maintain
multiple levels of backup, each of which backs up only those files that have changed
since the last backup of the next higher (numerically lower) level. It is less suited
towards data exchange because its formats are very specific to BSD. Even older
releases of FreeBSD cannot read dumps created under FreeBSD Release 5.

• amanda, in the Ports Collection, is another popular backup program.

Backup strategies are frequently the subject of religious wars. I personally find that tar
does everything I want, but you’ll find plenty of people who recommend dump or
amanda instead. In the following section, we’ll look at the basics of using tar. See the
man page dump(8) for more information on dump.

tar
tar, the tape archiver, performs the following functions:

• Creating an archive, which can be a serial device such as a tape, or a disk file, from
the contents of a number of directories.

• Extracting files from an archive.

• Listing the contents of an archive.

tar does not compress the data. The resulting archive is slightly larger than the sum of
the files that it contains, since it also contains a certain amount of header information.
You can, however, use the gzip program to compress a tar archive, and tar invokes it for
you automatically with the -z option. The size of the resultant archives depends strongly
on the data you put in them. JPEG images, for example, hardly compress at all, while
text compresses quite well and can be as much as 90% smaller than the original file.

254 Chapter 14: Tapes, backups and floppy disks

30 June 2003, 15:06:40 The Complete FreeBSD (tapes.mm), page 254

Creating a tar archive

Create an archive with the c option. Unlike most UNIX programs, tar does not require a
hyphen (-) in front of the options. For example, to save your complete kernel source tree,
you could write:

tar cvf source-archive.tar /usr/src/sys
tar: Removing leading / from absolute path names in the archive.
usr/src/sys/
usr/src/sys/CVS/
usr/src/sys/CVS/Root
usr/src/sys/CVS/Repository
usr/src/sys/CVS/Entries
usr/src/sys/compile/
usr/src/sys/compile/CVS/
(etc)

The parameters have the following meaning:

• cvf are the options. c stands for create an archive, v specifies verbose operation (in
this case, this causes tar to produce the list of files being archived), and f specifies
that the next parameter is the name of the archive file.

• source-archive.tar is the name of the archive. In this case, it’s a disk file.

• /usr/src/sys is the name of the directory to archive. tar archives all files in the
directory, including most devices. For historical reasons, tar can’t back up devices
with minor numbers greater than 65536, and changing the format would make it
incompatible with other systems.

The message on the first line (Removing leading / ...) indicates that, although the
directory name was specified as /usr/src/sys, tar treats it as usr/src/sys. This makes
it possible to restore the files into another directory at a later time.

You can back up to tape in exactly the same way:

tar cvf /dev/nsa0 /usr/src/sys

There is a simpler way, howev er: if you don’t specify a file name, tar looks for the
environment variable TAPE. If it finds it, it interprets it as the name of the tape drive.
You can make things a lot easier by setting the following line in the configuration file for
your shell (.profile for sh, .bashrc for bash, .login for csh and tcsh):

TAPE=/dev/nsa0 export TAPE for sh and bash
setenv TAPE /dev/nsa0 for csh and tcsh

After this, the previous example simplifies to:

tar cv /usr/src/sys

Using floppy disks under FreeBSD 257

30 June 2003, 15:06:40 The Complete FreeBSD (tapes.mm), page 257

always necessary to have a file system on the diskette—in fact, as we’ll see, it can be a
disadvantage. In addition, FreeBSD offers different kinds of file system, so it performs
the two functions with different programs. In this section, we’ll look at fdformat, which
performs the low-level format. We’ll look at how to create a UFS or Microsoft file
system in the next section.

To format a diskette in the first floppy drive, /dev/fd0, you would enter:

$ fdformat /dev/fd0
Format 1440K floppy ‘/dev/fd0’? (y/n): y
Processing --

Each hyphen character (-) represents two tracks. As the format proceeds, the hyphens
change to an F (Format) and then to V (Verify) in turn, so at the end the line reads

Processing VV done.

File systems on floppy
It’s possible to use floppies as file systems under FreeBSD. You can create a UFS file
system on a floppy just like on a hard disk. This is not necessarily a good idea: the UFS
file system is designed for performance, not maximum capacity. By default, it doesn’t
use the last 8% of disk space, and it includes a lot of structure information that further
reduces the space available on the disk. Here’s an example of creating a file system,
mounting it on the directory /A, and listing the remaining space available on an empty
3½" floppy. Since release 5, FreeBSD no longer requires a partition table on a floppy, so
you don’t need to run bsdlabel (the replacement for the older disklabel program).

newfs -O1 /dev/fd0 create a new file system
/dev/fd0: 1.4MB (2880 sectors) block size 16384, fragment size 2048

using 2 cylinder groups of 1.00MB, 64 blks, 128 inodes.
super-block backups (for fsck -b #) at:
32, 2080
mount /dev/fd0 /A mount the floppy on /A
df -k /A display the space available
Filesystem 1024-blocks Used Avail Capacity Mounted on
/dev/fd0 1326 2 1218 0% /A

Let’s look at this in a little more detail:

• newfs creates the UFS file system on the floppy. We use the -O1 flag to force the
older UFS1 format, which leaves more usable space than the default UFS2.

• We hav e already seen mount on page 192. In this case, we use it to mount the floppy
on the file system /A.

• The df program shows the maximum and available space on a file system. By
default, df displays usage in blocks of 512 bytes, an inconvenient size. In this
example we use the -k option to display it in kilobytes. You can set a default block
size via the environment variable BLOCKSIZE. If it had been set to 1024, we would
see the same output without the -k option. See page 128 for more details of
environment variables.

258 Chapter 14: Tapes, backups and floppy disks

30 June 2003, 15:06:40 The Complete FreeBSD (tapes.mm), page 258

The output of df looks terrible! Our floppy only has 1218 kB left for normal user data,
ev en though there is nothing on it and even df claims that it can really store 1326 kB.
This is because UFS keeps a default of 8% of the space free for performance reasons.
You can change this, however, with tunefs, the file system tune program:1

umount /A first unmount the floppy
tunefs -m 0 /dev/fd0 and change the minimum free to 0
tunefs: minimum percentage of free space changes from 8% to 0%
tunefs: should optimize for space with minfree < 8%
tunefs -o space /dev/fd0 change the optimization
tunefs: optimization preference changes from time to space
mount /dev/fd0 /A mount the file system again
df /A and take another look
Filesystem 1024-blocks Used Avail Capacity Mounted on
/dev/fd0 1326 2 1324 0% /A

Still, this is a far cry from the claimed data storage of a Microsoft disk. In fact, Microsoft
disks can’t store the full 1.4 MB either: they also need space for storing directories and
allocation tables. The moral of the story: only use file systems on floppy if you don’t
have any alternative.

Microsoft file systems
To create a Microsoft FAT12, FAT16 or FAT32 file system, use the newfs_msdos
command:

$ newfs_msdos -f 1440 /dev/fd0

The specification -f 1440 tells newfs_msdos that this is a 1.4 MB floppy. Alternatively,
you can use the mformat command:

$ mformat A:

You can specify the number of tracks with the -t option, and the number of sectors with
the -s option. To explicitly specify a floppy with 80 tracks and 18 sectors (a standard
3½" 1.44 MB floppy), you could enter:

$ mformat -t 80 -s 18 A:

mformat is one of the mtools that we look at in the next section.

Other uses of floppies
Well, you could take the disks out of the cover and use them as a kind of frisbee. But
there is one other useful thing you can do with floppies: as an archive medium, they don’t
need a file system on them. They just need to be low-level formatted. For example, to
write the contents of the current directory onto a floppy, you could enter:

1. To quote the man page: You can tune a file system, but you can’t tune a fish.

Using floppy disks under FreeBSD 259

30 June 2003, 15:06:40 The Complete FreeBSD (tapes.mm), page 259

$ tar cvfM /dev/fd0 .
./
.xfmrc
.x6530modkey
.uwmrc
.twmrc
.rnsoft
.rnlast
...etc
Prepare volume #2 for /dev/fd0 and hit return:

Note also the solitary dot (.) at the end of the command line. That’s the name of the
current directory, and that’s what you’re backing up. Note also the option M, which is
short for --multi-volume. There’s a very good chance that you’ll run out of space on a
floppy, and this option says that you have a sufficient supply of floppies to perform the
complete backup.

To extract the data again, use tar with the x option:

$ tar xvfM /dev/fd0
./
.xfmrc
.x6530modkey
.uwmrc
...etc

See the man page tar(1) for other things you can do with tar.

Accessing Microsoft floppies
Of course, most of the time you get data on a floppy, it’s not in tar format: it has a
Microsoft file system on it. We’v e already seen the Microsoft file system type on page
190, but that’s a bit of overkill if you just want to copy files from floppy. In this case, use
the mtools package from the Ports Collection. mtools is an implementation of the MS-
DOS programs ATTRIB, CD, COPY, DEL, DIR, FORMAT, LABEL, MD, RD, READ,
REN, and TYPE under UNIX. To avoid confusion with existing utilities, the UNIX
versions of these commands start with the letter m. They are also written in lower case.
For example, to list the contents of a floppy and copy one of the files to the current
(FreeBSD) directory, you might enter:

$ mdir list the current directory on A:
Volume in drive A is MESSED OS
Directory for A:/

IO SYS 33430 4-09-91 5:00a
MSDOS SYS 37394 4-09-91 5:00a
COMMAND COM 47845 12-23-92 5:22p
NFS <DIR> 12-24-92 11:03a
DOSEDIT COM 1728 10-07-83 7:40a
CONFIG SYS 792 10-07-94 7:31p
AUTOEXEC BAT 191 12-24-92 11:10a
MOUSE <DIR> 12-24-92 11:09a

12 File(s) 82944 bytes free
$ mcd nfs change to directory A:\NFS
$ mdir and list the directory
Volume in drive A is MESSED OS
Directory for A:/NFS

260 Chapter 14: Tapes, backups and floppy disks

30 June 2003, 15:06:40 The Complete FreeBSD (tapes.mm), page 260

. <DIR> 12-24-92 11:03a

.. <DIR> 12-24-92 11:03a
HOSTS 5985 10-07-94 7:34p
NETWORK BAT 103 12-24-92 12:28p
DRIVES BAT 98 11-07-94 5:24p
...and many more

51 File(s) 82944 bytes free
$ mtype drives.bat type the contents of DRIVES.BAT
net use c: presto:/usr/dos
c:
cd \nfs
net use f: porsche:/dos
net use g: porsche:/usr
$ mcopy a:hosts . copy A:HOSTS to local UNIX directory
Copying HOSTS
$ ls -l hosts and list it
-rw-rw-rw- 1 root wheel 5985 Jan 28 18:04 hosts

You must specify the drive letter to mcopy, because it uses this indication to decide
whether the file name is a UNIX or a Microsoft file name. You can copy files from
FreeBSD to the floppy as well, of course.

A word of warning. UNIX uses a different text data format from Microsoft: in UNIX,
lines end with a single character, called Newline, and represented by the characters \n in
the C programming language. It corresponds to the ASCII character Line Feed
(represented by ˆJ). Microsoft uses two characters, a Carriage Return (ˆM) followed by
a Line Feed. This unfortunate difference causes a number of unexpected compatibility
problems, since both characters are usually invisible on the screen.

In FreeBSD, you won’t normally have many problems. Occasionally a program
complains about non-printable characters in an input line. Some, like Emacs, show them.
For example, Emacs shows our last file, drives.bat, like this:

net use c: presto:/usr/dosˆM
c:ˆM
cd \nfsˆM
net use f: porsche:/dosˆM
net use g: porsche:/usrˆM

This may seem relatively harmless, but it confuses some programs, including the C
compiler and pagers like more, which may react in confusing ways. You can remove
them with the -t option of mcopy:

$ mcopy -t a:drives.bat .

Transferring files in the other direction is more likely to cause problems. For example,
you might edit this file under FreeBSD and then copy it back to the diskette. The results
depend on the editor, but assuming we changed all occurrences of the word porsche to
freedom, and then copied the file back to the diskette, Microsoft might then find:

C:> type drives.bat
net use c: presto:/usr/dos

c:
cd \nfs

net use f: freedom:/dos
net use g: freedom:/usr

Using floppy disks under FreeBSD 261

30 June 2003, 15:06:40 The Complete FreeBSD (tapes.mm), page 261

This is a typical result of removing the Carriage Return characters. The -t option to
mcopy can help here, too. If you use it when copying to a Microsoft file system, it
reinserts the Carriage Return characters.

30 June 2003, 15:06:40 The Complete FreeBSD (reset.mm), page 262

Routing 309

30 June 2003, 15:06:40 The Complete FreeBSD (netsetup.mm), page 309

look at the differences we need for the ISP example.net. In the middle of the Internet,
things are even more extreme. There may be dozens of interfaces, and the choice of a
route for a particular address may be much more complicated. In such an environment,
two problems occur:

• The concept of a default route no longer has much significance. If each interface
carries roughly equal traffic, you really need to specify the interface for each network
or group of networks. As a result, the routing tables can become enormous.

• There are probably multiple ways to route packets destined for a specific system.
Obviously, you should choose the best route. But what happens if it fails or becomes
congested? Then it’s not the best route any more. This kind of change happens
frequently enough that humans can’t keep up with it—you need to run routing
software to manage the routing table.

Adding routes automatically
FreeBSD comes with all the currently available routing software, primarily the daemon
routed. The newer gated used to be included as well, but it is no longer available for
free. It is available from http://www.nexthop.com/products/howto_order.shtml. An
alternative in the Ports Collection is zebra.

All these daemons have one thing in common: you don’t need them. At any rate, you
don’t need them until you have at least two different connections to the Internet, and even
then it’s not sure. As a result, we won’t discuss them here. If you do need to run routing
daemons, read all about them in TCP/IP Network Administration, by Craig Hunt.

From our point of view, howev er, the routing protocols have one particular significance:
the system expects the routing table to be updated automatically. As a result, it is
designed to use the information supplied by the routing protocols to perform the update.
This information consists of two parts:

• The address and netmask of the network (in other words, the address range).

• The address of the gateway that forwards data for this address range. The gateway is
a directly connected system, so it also figures in the routing table.

Adding routes manually
As we saw in the previous section, the routing software uses only addresses, and not the
interface name. To add routes manually, we hav e to give the same information.

The program that adds routes manually is called route. We need it to add routes to
systems other than those to which we are directly connected.

310 Chapter 17: Configuring the local networ k

30 June 2003, 15:06:40 The Complete FreeBSD (netsetup.mm), page 310

To set up the routing tables for the systems connected only to our reference network
(freebie, presto, bumble and wait), we could write:

route add default gw

During system startup, the script /etc/rc.network performs this operation automatically if
you set the following variable in /etc/rc.conf :

defaultrouter="223.147.37.5" # Set to default gateway (or NO).

Note that we enter the address of the default router as an IP address, not a name. This
command is executed before the name server is running. We can’t change the sequence
in which we start the processes: depending on where our name server is, we may need to
have the route in place to access the name server.

On system gw, the default route goes via the tun0 interface:

defaultrouter="139.130.136.129" # Set to default gateway (or NO).
gateway_enable="YES" # Set to YES if this host will be a gateway.

This is a PPP interface, so you don’t need a defaultrouter entry; if you did, it would
look like the commented-out entry above. On page 347 we’ll see how PPP sets the
default route.

We need to enable gateway functionality on this system, since it receives data packets on
behalf of other systems. We’ll look at this issue in more depth on page 313.

ISP’s route setup
At the ISP site, things are slightly more complicated than at example.org. Let’s look at
the gateway machine free-gw.example.net. It has three connections, to the global Internet,
to example.org and to another network, biguser.com (the network serviced by interface
ppp0). To add the routes requires something like the following commands:

route add default 139.130.237.65 igw.example.net
route add -net 223.147.37.0 139.130.136.133 gw.example.org
route add -net 223.147.38.0 -iface ppp0 local ppp0 interface

The first line tells the system that the default route is via gw.example.org. The second
shows that the network with the base IP address 223.147.37.0 (example.org) can be
reached via the gateway address 139.130.136.133, which is the remote end of the PPP
link connected via ppp3. In the case of biguser.com, we don’t know the address of the
remote end; possibly it changes every time it’s connected. As a result, we specify the
name of the interface instead: we know it’s always connected via ppp0.

Access without a password 423

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 423

To solve this problem, execute the agent in your current environment with eval, then run
ssh-add:

$ eval ‘ssh-agent‘
$ ssh-add
Enter passphrase for /home/grog/.ssh/id_rsa: (enter the passphrase)
Identity added: /home/grog/.ssh/id_rsa (/home/grog/.ssh/id_rsa)
Identity added: /home/grog/.ssh/id_dsa (/home/grog/.ssh/id_dsa)
Identity added: /home/grog/.ssh/identity (grog@zaphod.example.org)

You can use ssh-add’s -l flag to list which keys the authentication agent currently knows
about:

$ ssh-add -l
1024 02:20:1d:50:78:c5:7c:56:7b:1d:e3:54:02:2c:99:76 grog@zaphod.example.org (RSA1)
1024 95:d5:01:ca:90:04:7d:84:f6:00:32:7a:ea:a6:57:2d /home/grog/.ssh/id_rsa (RSA)
1024 53:53:af:22:87:07:10:e4:5a:2c:21:31:ec:29:1c:5f /home/grog/.ssh/id_dsa (DSA)

If you’re using a Bourne-style shell such as bash, you can automate a lot of this by
putting the following commands in your .bashrc or .profile file:

if tty > /dev/null; then
ssh-add -l > /dev/null
if [$? -ne 0]; then

eval ‘ssh-agent‘
fi

fi

This first uses the tty command to check if this is an interactive shell, then checks if you
already have an authentication agent. If it doesn’t, it starts one. Don’t start a new
authentication agent if you already have one: you’d lose any keys that the agent already
knows. This script doesn’t add keys, because this requires your intervention and could be
annoying if you had to do it every time you start a shell.

Setting up X to use ssh
If you work with X, you have the opportunity to start a large number of concurrent ssh
sessions. It would be annoying to have to enter keys for each session, so there’s an
alternative method: start X with an ssh-agent, and it will pass the information on to any
xterms that it starts. Add the following commands to your .xinitrc:

eval ‘ssh-agent‘
ssh-add < /dev/null

When you run ssh-add in this manner, without an input file, it runs a program to prompt
for the passphrase. By default it’s /usr/X11R6/bin/ssh-askpass, but you can change it by
setting the SSH_ASKPASS environment variable. /usr/X11R6/bin/ssh-askpass opens a
window and prompts for a passphrase. From then on, anything started under the X
session will automatically inherit the keys.

424 Chapter 24: Basic networ k access: clients

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 424

ssh tunnels
Tunneling is a technique for encapsulating an IP connection inside another IP connection.
Why would you want to do that? One reason is to add encryption to an otherwise
unencrypted connection, such as telnet or POP. Another is to get access to a service on a
system that does not generally supply this service to the Internet.

Let’s consider using http first. Assume you are travelling, and you want to access your
private web server back home. Normally a connection to the http port of presto.exam-
ple.com might have the following parameters:

andante presto
IP 192.1.7.245

Port 9132

IP 223.147.37.2

Port 80

But what if the server is firewalled from the global Internet, so you can’t access it
directly? That’s when you need the ssh tunnel. The ssh tunnel creates a local
connection at each end and a separate secure connection across the Internet:

andante

Tunnel A Tunnel B

presto
127.1

4096

192.1.7.245

3312

150.101.248.57

22

127.1

80

The ssh connection is shown in fixed italic font. It looks just like any other ssh
connection. The differences are the local connections at each end: instead of talking to
presto port 80 (http), you talk to port 4096 on your local machine. Why 4096? It’s your
choice; you can use any port above 1024. If you’re on andante, you can set up this tunnel
with the command:

$ ssh -L 4096:presto.example.org:80 presto.example.org

To do the same thing from the presto end, you’d set up a re verse tunnel with the -R
option:

$ ssh -R 4096:presto.example.org:80 andante.example.org

These commands both set up a tunnel from port 4096 on andante to port 80 on the host
presto.example.org. You still need to supply the name of the system to connect to; it
doesn’t hav e to be the same. For example, you might not be able to log in to the web
server, but you could access your machine back home, and it has access to the web server.
In this case, you could connect to your machine at home:

$ ssh -L 4096:presto.example.org:80 freebie.example.org

In addition to setting up the tunnel, ssh can create a normal interactive session. If you
don’t want this, use the -f option to tell ssh to go into the background after
authentication. You can also specify a command to execute, but this is no longer

ssh tunnels 425

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 425

necessary for protocol version 2. If you don’t want to execute a command, use the -N
option:

$ ssh -L 4096:presto.example.org:80 presto.example.org -f -N

If you’re running protocol version 1, you can use sleep with an appropriately long
timeout, in this example 1 hour:

$ ssh -L 4096:presto.example.org:80 presto.example.org -f sleep 3600

Tunneling X
Running X clients on the remote machine is special enough that ssh provides a special
form of tunneling to deal with it. To use it, you must tell ssh the location of an
.Xauthority file. Do this by adding the following line to the file ˜/.ssh/environment:

XAUTHORITY=/home/yourname/.Xauthority

The name must be in fully qualified form: ssh does not understand the shortcut ˜/ to
represent your home directory. You don’t need to create ˜/.Xauthority, though: ssh can
do that for you.

Once you have this in place, you can set up X tunneling in two different ways. To start it
from the command line, enter something like:

$ ssh -X -f website xterm

As before, the -f option tells ssh to go into the background. The -X option specifies X
tunneling, and ssh runs an xterm on the local machine. The DISPLAY environment
variable points to the (remote) local host:

$ echo $DISPLAY
localhost:13.1

Other uses of tunnels
Tunneling has many other uses. Another interesting one is bridging networks. For
example, http://unix.za.net/gateway/documentation/networking/vpn/fbsd.html describes
how to set up a VPN (Virtual Private Network) using User PPP and an ssh tunnel.

Configuring ssh
It can be a bit of a nuisance to have to supply all these parameters to ssh, but you don’t
have to: you can supply information for frequently accessed hosts in a configuration file.
On startup, ssh checks for configuration information in a number of places. It checks for
them first in the command-line options, then in you configuration file ˜/.ssh/config, and
finally in the system-wide configuration file /etc/ssh/ssh_config. The way it treats

426 Chapter 24: Basic networ k access: clients

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 426

duplicate information is pretty much the opposite of what you’d expect: unlike most other
programs, options found in a configuration file read in later do not replace the options
found in an earlier file. Options on the command line replace those given in
configuration files.

In practice, such conflicts happen less often than you might expect. The file
/etc/ssh/ssh_config, the main configuration file for the system, normally contains only
comments, and by default you don’t even get a local ˜/.ssh/config.

ssh_config can contain a large number of options. They’re all described in the man page
ssh_config(8), but it’s worth looking at some of the more common ones. In this section
we’ll look at some of the more common configuration options.

• The entry Host is special: the options that follow, up to the end of the file or the next
following Host argument, relate only to hosts that match the arguments on the Host
line.

• Optionally, ssh can compress the data streams. This can save a lot of traffic, but it
can also increase CPU usage, so by default it is disabled. You can do this by passing
the -C flag to ssh, but you can also do so by setting Compression yes in the
configuration file.

• You can escape out of an ssh session to issue commands to ssh with the
EscapeChar. By default it’s the tilde character, ˜. Other programs, notably rlogin,
use this character as well, so you may want to change it. You can set this value from
the ssh command line with the -e option.

• To forward an X11 connection, as shown above, you can also set the ForwardX11
variable to yes. This may be useful if you frequently access a remote machine and
require X forwarding. This also sets the DISPLAY environment variable correctly to
go over the secure channel.

• By default, ssh sends regular messages to the remote sshd server to check if the
remote system has gone down. This can cause connections to be dropped on a flaky
connection. Set the KeepAlive option to no to disable this behaviour.

• Use the LocalForward parameter to set up a tunnel. The syntax is similar to that of
the -L option above: on andante, instead of the command line:

$ ssh -L 4096:presto.example.org:80 presto.example.org

you would put the following in your ˜/.ssh/config:

host presto.example.org
LocalForward 4096 presto.example.org:80

Note that the first port is separated from the other two parameters by a space, not a
colon.

Configur ing ssh 427

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 427

• Similarly, you can set up a reverse tunnel with the RemoteForward parameter. On
presto, instead of the command line:

$ ssh -R 4096:presto.example.org:80 andante.example.org

you would put the following in your ˜/.ssh/config:

host andante.example.org
RemoteForward 4096 presto.example.org:80

• By default, ssh uses password authentication if it can’t negotiate a key pair. Set
PasswordAuthentication to no if you don’t want this.

• Normally ssh connects to the server on port 22 (ssh). If the remote server uses a
different port, specify it with the Port keyword. You can also use the -p option on
the ssh command line.

• By default, ssh attempts to connect using protocol 2, and if that doesn’t work, it tries
to connect using protocol 1. You can override this default with the Protocol
keyword. For example, to reverse the default and try first protocol 1, then protocol 2,
you would write:

Protocol 1,2

• By default, ssh refuses to connect to a known host if its key fingerprint changes.
Instead, you must manually remove the entry for the system from the
˜/.ssh/known_hosts or ˜/.ssh/known_hosts2 file. This can indicate that somebody is
faking the remote machine, but more often it’s because the remote machine has really
changed its host key, which it might do at every reboot. If this gets on your nerves,
you can add this line to your configuration file:

StrictHostKeyChecking no

This doesn’t stop the warnings, but ssh continues:

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the DSA host key has just been changed.
The fingerprint for the DSA key sent by the remote host is
95:80:4c:fb:cc:96:1b:36:c5:c9:2b:cb:d1:d4:16:68.
Please contact your system administrator.
Add correct host key in /home/grog/.ssh/known_hosts2 to get rid of this message.
Offending key in /home/grog/.ssh/known_hosts2:39

• ssh assumes that your user name on the remote system is the same as the name on
the local system. If that’s not the case, you can use the User keyword to specify the
remote user name. Alternatively, you can use the format:

$ ssh newuser@remotehost.org

428 Chapter 24: Basic networ k access: clients

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 428

Summar y of files in ˜/.ssh
In addition to the files we have discussed, you will find two other files in the ˜/.ssh
directory:

• known_hosts contains the key fingerprints of all hosts to which you have connected.
The example on page 419 shows how ssh adds a key.

• random_seed is a seed used to generate the keys.

In summary, then, you can expect the following files in your ˜/.ssh:

drwx------ 2 grog grog 512 Jan 18 21:04 . directory
-rw-r--r-- 1 grog grog 1705 Oct 26 1999 authorized_keys keys
-rw-r--r-- 1 grog grog 844 Jan 27 22:18 authorized_keys2 keys, Version 2 only
-rw-r--r-- 1 grog grog 25 Oct 20 01:35 environment environment for sshd
-rw------- 1 grog grog 736 Jul 19 15:40 id_dsa DSA private key
-rw-r--r-- 1 grog grog 611 Jul 19 15:40 id_dsa.pub DSA public key
-rw------- 1 grog grog 951 Jul 19 15:40 id_rsa RSA private key
-rw-r--r-- 1 grog grog 231 Jul 19 15:40 id_rsa.pub RSA public key
-rw------- 1 grog grog 536 Jul 19 15:39 identity RSA1 private key
-rw-r--r-- 1 grog grog 340 Jul 19 15:39 identity.pub RSA1 public key
-rw------- 1 grog grog 1000 Jul 25 1999 known_hosts list of known hosts
-rw------- 1 grog grog 512 Jul 25 1999 random_seed for key generation

Note particularly the permissions and the ownership of the files and the directory itself.
If they are wrong, ssh won’t work, and it won’t tell you why not. In particular, the
directory must not be group writeable.

Tr oubleshooting ssh connections
A surprising number of things can go wrong with setting up ssh connections. Here are
some of the more common ones:

• After some delay, you get the message:

ssh: connect to address 223.147.37.76 port 22: Operation timed out

This probably means that the remote host is down, or that you can’t reach it due to
network problems.

• You get the message:

ssh: connect to address 223.147.37.65 port 22: Connection refused

This means that the remote host is up, but no sshd is running.

• You hav e set up keys, but you still get a message asking for a password.

This can mean a number of things: your ssh-agent isn’t running, you haven’t added
the keys, the other end can’t find them, or the security on the keys at the other end is
incorrect. You can check the first two like this:

Troubleshooting ssh connections 429

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 429

$ ssh-add -l
Could not open a connection to your authentication agent.

This message means that you haven’t run ssh-agent. Do it like this:

$ eval ‘ssh-agent‘
Agent pid 95180
$ ssh-add -l
The agent has no identities.
$ ssh-add
Enter passphrase for /home/grog/.ssh/id_rsa: no echo
Identity added: /home/grog/.ssh/id_rsa (/home/grog/.ssh/id_rsa)
Identity added: /home/grog/.ssh/id_dsa (/home/grog/.ssh/id_dsa)
Identity added: /home/grog/.ssh/identity (grog@freebie.lemis.com)
$ ssh-add -l
1024 02:20:1d:50:78:c5:7c:56:7b:1d:e3:54:02:2c:99:76 grog@zaphod.example.org (RSA1)
1024 95:d5:01:ca:90:04:7d:84:f6:00:32:7a:ea:a6:57:2d /home/grog/.ssh/id_rsa (RSA)
1024 53:53:af:22:87:07:10:e4:5a:2c:21:31:ec:29:1c:5f /home/grog/.ssh/id_dsa (DSA)

In this case, all three keys are set correctly. If you have, say, only an RSA1 (protocol
Version 1) key, and the other end doesn’t support protocol Version 1, ssh will ask for
a password.

• You get a message like this:

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the DSA host key has just been changed.
The fingerprint for the DSA key sent by the remote host is
95:80:4c:fb:cc:96:1b:36:c5:c9:2b:cb:d1:d4:16:68.
Please contact your system administrator.
Add correct host key in /home/grog/.ssh/known_hosts2 to get rid of this message.
Offending key in /home/grog/.ssh/known_hosts2:39

There are two possible reasons for this message. As the message states, one is that
somebody is trying to intercept the connection, and the other one is that the remote
system has changed its host key. The latter is by far the more common. To fix this
problem, you have two choices:

1. Edit your ˜/.ssh/known_hosts2 file and remove references to the remote system.
The message suggests changing line 39, but you might have more than one key
for this system in this file. If one is wrong, there’s a good chance that any others
will be too, so you should remove all references.

2. Add the following line to your ˜/.ssh/config file:

StrictHostKeyChecking no

It doesn’t remove the warning, but it allows you to connect anyway.

ssh includes debugging options that may help debug problems setting up connections.
Use the -v option, up to three times, to get ssh to display largely undocumented
information about what is going on. The output is pretty verbose; with three -v options
you get nearly 200 lines of information.

430 Chapter 24: Basic networ k access: clients

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 430

telnet
As mentioned above, telnet is an older, unencrypted program that connects to a shell on a
remote system. You might find it of use when connecting to a system that doesn’t hav e
ssh. Be very careful not to use valuable passwords, since they are transmitted in the
clear. Apart from that, you use it pretty much in the same way as ssh:

$ telnet freebie
Trying 223.147.37.1...
Connected to freebie.example.org.
Escape character is ’ˆ]’.
login: grog
Password: (no echo)

FreeBSD/i386 (wantadilla.example.org) (ttypj)

Last login: Mon Oct 14 17:51:57 from sydney.example.org
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserved.

FreeBSD 5.0-RELEASE (FREEBIE) #0: Tue Dec 31 19:08:24 CST 2002

You have new mail.
If I have seen farther than others, it is because I was standing on the
shoulders of giants.

-- Isaac Newton

In the sciences, we are now uniquely privileged to sit side by side
with the giants on whose shoulders we stand.

-- Gerald Holton

If I have not seen as far as others, it is because giants were standing
on my shoulders.

-- Hal Abelson

In computer science, we stand on each other’s feet.
-- Brian K. Reid

$ tty
/dev/ttyp9
$

Once you get this far, you are connected to the machine in an almost identical manner as
if you were directly connected. This is particularly true if you are running X. As the
output of the tty command shows, your ‘‘terminal’’ is a pseudo-tty or pty (pronounced
‘‘pity’’). This is the same interface that you will have with an xterm.

It’s worth looking in more detail at how the connection is established:

• The first line (Trying...) appears as soon as telnet has resolved the IP address.

• The next three lines appear as soon as it has a reply from the other end. At this point,
there can be a marked delay before telnet continues. telnet performs a reverse DNS
lookup to find the name of your system. If you get a delay here, it could be an
indication that your reverse lookup is not working correctly. After DNS times out, it
will continue normally, but the delay is a nuisance.

ftp 437

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 437

$ ftp ftp.tu-darmstadt.de
Connected to ftp.tu-darmstadt.de.
220 rs3.hrz.th-darmstadt.de FTP server (Version 4.1) ready.
331 Password required for grog.
530 Login incorrect.
Login failed.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

This error message is not very obvious: although you’re not logged in, you still get the
same prompt, and ftp produces enough verbiage that it’s easy to oversee that the login
attempt failed. To complete the login, use the user command:

ftp> user ftp
331 Guest login ok, send ident as password.
Password: username does not echo
230 Guest login ok, access restrictions apply.

sftp
sftp is yet another ssh-based program. It’s designed to be as compatible as possible with
ftp, so you use it in exactly the same manner. As with other ssh-related commands, you
need to authenticate in an ssh-specific manner. In addition, it has an exec command,
which allows you to run programs on the remote machine.

To use sftp, the remote machine must be able to run the sftp-server server. It is normally
started from sshd. See page 454 for more details.

rsync
Frequently you want to keep identical copies of files on different machines. You can
copy them, of course, but if there are only small changes in large files, this can be
relatively inefficient. You can perform this task more efficiently with rsync, which is
designed to keep identical copies of files on two different systems and to optimize
network bandwidth while doing so. It’s in the Ports Collection. Install in the normal
manner:

cd /usr/ports/net/rsync
make install

By default, rsync uses ssh to perform the transfer, so you need to have ssh configured
correctly. In particular, you should be using ssh-agent authentication.

You can use rsync like scp: the syntax is compatible up to a point. For example, you
could copy a file from a remote system with:

$ rsync presto:/var/log/messages prestomessages

438 Chapter 24: Basic networ k access: clients

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 438

You don’t need to install rsync just for that, of course: you can do exactly the same thing
with scp. rsync has one advantage over scp, howev er, even in this case. The first time
you copy the file, there’s no difference. But files like /var/log/messages grow at the end,
and the rest doesn’t change. That’s an ideal situation for rsync: it uses an algorithm that
recognizes common parts of files (not necessarily at the beginning) and optimizes the
transfer accordingly. The first time you run the program, you might see:

$ rsync -v /var/log/messages freebie:/var/tmp
messages
wrote 80342 bytes read 36 bytes 53585.33 bytes/sec
total size is 80255 speedup is 1.00
$ rsync -v /var/log/messages freebie:/var/tmp
messages
wrote 535 bytes read 726 bytes 840.67 bytes/sec
total size is 80255 speedup is 63.64

This example used the option -v to show details of what was transferred; otherwise you
wouldn’t see any output at all. The first time round, the entire file was copied, so there
was no speedup. The second time, though, almost nothing needed to be copied, so the
transfer was over 60 times as fast.

Copying directory hierarchies
rsync has a bewildering number of options for synchronizing directories. Consider the
case where you maintain web pages locally, but your main web server is co-located
somewhere else. After updating the local web pages, you can run a script to update the
remote pages with commands like:

rsync -LHzav --exclude=RCS --exclude="*˜" ˜grog/public_html/* website:htdocs/grog
rsync -LHztpgov --exclude="*˜" website:htdocs

The first rsync command synchronizes the local directory ˜grog/public_html to the
remote directory htdocs/grog on the system website. It includes all subdirectories with
the exception of the RCS directories. The second command synchronizes the top level
web directory only, and not the subdirectories, many of which shouldn’t be maintained on
the remote site. In each case, files ending in ˜ are excluded (these are normally Emacs
backup files), and in the second case the RCS subdirectories are also excluded. Let’s
look more carefully at all those options:

• -L copies symbolic links (which the documentation refers to as ‘‘soft links’’) as
separate files. If you don’t include this option, symbolic links to files within the
directory hierarchy will work, but links outside the hierarchy may be broken
(depending on whether a file of that name exists on the destination system or not). In
this example, a number of files are really located elsewhere, so it makes sense to copy
them as files.

NFS client 445

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 445

Mounting NFS file systems automatically
If you want to mount NFS files automatically at boot time, make an entry for them in the
file /etc/fstab. You can even do this if you don’t necessarily want to mount them: just add
the keyword noauto, and mountall will ignore them at boot time. The advantage is that
you then just need to specify, say,

mount /src

instead of:

mount -s freebie:/src /src

See the description of /etc/fstab on page 566 for more information.

NFS strangenesses
NFS mimics a local file system across the network. It does a pretty good job, but it’s not
perfect. Here are some things that you should consider.

No devices
NFS handles disk files and directories, but not devices. Actually, it handles devices too,
but not the way you would expect.

In a UNIX file system, a device is more correctly known as a device node: it’s an inode
that describes a device in terms of its major and minor numbers (see page 195). The
device itself is implemented by the device driver. NFS exports device nodes in UFS file
systems, but it doesn’t interpret the fact that these devices are on another system. If you
refer to the devices, one of three things will happen:

• If a driver for the specified major number exists on your local system, and the devices
are the same on both systems, you will access the local device. Depending on which
device it is, this could create some subtle problems that could go undetected for quite
a while.

• If a driver for the specified major number exists on your local system, and the devices
are different on the two systems, you will still access the local device with the same
major and minor numbers, if such a device exists. The results could be very
confusing.

• If no driver for the specified major number exists on your local system, the request
will fail. This can still cause considerable confusion.

If the NFS server system runs devfs, the device nodes are not exported. You won’t see
anything unless there are leftover device nodes from before the time of migration to devfs.

446 Chapter 24: Basic networ k access: clients

30 June 2003, 15:06:40 The Complete FreeBSD (netclient.mm), page 446

Just one file system
NFS exports file systems, not directory hierarchies. Consider the example on page 444.
presto has mounted both freebie:/ and freebie:/usr. If it were just to mount freebie:/, we
would see the directory /freebie/usr, but it would be empty.

Things can get even stranger: you can mount a remote file system on a directory that is
not empty. Consider the following scenario:

• You install FreeBSD on system freebie. In single-user mode, before mounting the
other file systems, you create a directory /usr/bin and a file /usr/bin/vi. Since the
/usr file system isn’t mounted, this file goes onto the root file system.

• You go to multi-user mode and mount the other file systems, including the file system
for /usr. You can no longer see the /usr/bin/vi you put there in single-user mode. It
hasn’t gone away, it’s just masked.

• On presto, you mount the file system freebie:/ on /freebie. If you list the contents of
the directory /freebie/usr, you will see the original file vi, and not the contents that
the users on freebie will see.

X in the networ k 525

30 June 2003, 15:06:40 The Complete FreeBSD (xtheory.mm), page 525

Multiple monitors across multiple servers
We saw above that a server can handle multiple monitors, and a system can handle
multiple servers. One problem with multiple monitors is that most computers can only
handle a small number of display boards: a single AGP board and possibly a number of
PCI boards. But PCI boards are difficult to find nowadays, and they’re slower and have
less memory.

If you have a number of machines located physically next to each other, you have the
alternative of running X on each of them and controlling everything from one keyboard
and mouse. You do this with the x11/x2x port. For example: freebie, presto and bumble
have monitors next to each other, and presto has two monitors. From left to right they are
freebie:0.0, presto:0.0, presto:0.1 and bumble:0.0. The keyboard and mouse are
connected to presto. To incorporate freebie:0.0 and bumble:0.0 in the group, enter these
commands on presto:

$ DISPLAY=:0.0 x2x -west -to freebie:0 &
$ DISPLAY=:0.1 x2x -east -to bumble:0 &

After this, you can move to the other machines by moving the mouse in the
corresponding direction. It’s not possible to continue to a further machine, but it is
possible to connect in other directions (north and south) from each monitor on presto,
which in this case would allow connections to at least six other machines. Before that
limitation becomes a problem, you need to find space for all the monitors.

Stopping X
To stop X, press the key combination Ctrl-Alt-Backspace, which is deliberately chosen
to resemble the key combination Ctrl-Alt-Delete used to reboot the machine. Ctrl-Alt-
Backspace stops X and returns you to the virtual terminal in which you started it. If you
run from xdm, it redisplays a login screen.

30 June 2003, 15:06:40 The Complete FreeBSD (reset.mm), page 526

Networ k booting 547

30 June 2003, 15:06:40 The Complete FreeBSD (starting.mm), page 547

................................done

.

After that, nothing appears on the screen for quite some time. In fact, the boot is
proceeding normally, and the next thing you see is a login prompt.

Configuring the machine
Setting up a diskless machine is not too difficult, but there are some gotchas:

• Currently, locking across NFS does not work properly. As a result, you may see
messages like this:

Dec 11 14:18:50 bumble sm-mta[141]: NOQUEUE: SYSERR(root): cannot flock(/var/run/
sendmail.pid, fd=6, type=2, omode=40001, euid=0): Operation not supported

One solution to this problem is to mount /var as an MD (memory) file system. This
is what currently happens by default, though it’s subject to change: at startup, when
the system detects that it is running diskless (via the sysctl vfs.nfs.disk-
less_valid), it invokes the configuration file /etc/rc.diskless1. This file in turn
causes the file /etc/rc.diskless2 to be invoked later in the startup procedure. Each of
these files adds an MD file system. In the course of time, this will be phased out and
replaced by the traditional configuration via /etc/fstab, but at the moment this file has
no provision for creating MD file systems.

You should probably look at these files carefully: they may need some tailoring to
your requirements.

• It is currently not possible to add swap on an NFS file system. swapon (usually
invoked from the startup scripts) reports, incorrectly:

Dec 11 14:18:46 bumble savecore: 192.109.197.82:/src/nodisk/swap/bumble: No such
file or directory

This, too, will change; in the meantime, it is possible to mount swap on files, even if
they are NFS mounted, but not on the NFS file system itself. This means that the first
of the following entries in /etc/fstab will not work, but the second will:

192.109.197.82:/src/nodisk/swap/bumble none swap sw 0 0
/src/nodisk/swap/bumble none swap sw 0 0
echunga:/src /src nfs rw 0 0

The reason here is the third line: /src/nodisk/swap/bumble is NFS mounted, so this is
a swap-to-file situation. For this to work, you may have to add the following line at
the end of your /etc/rc.diskless2:

swapon -a

548 Chapter 29: Starting and stopping the system

30 June 2003, 15:06:40 The Complete FreeBSD (starting.mm), page 548

This is because the standard system startup mounts swap before mounting additional
NFS file systems. If you place the swap file on the root file system, it will still work,
but frequently you will want the root file system to be read-only to be able to share it
between several machines.

• If the machine panics, it’s not possible to take a dump, because you have no disk.
The only alternative would be a kernel debugger.

Sharing system files between multiple machines
In many cases, you may have a number of machines that you want to run diskless. If you
have enough disk (one image for each machine), you don’t hav e anything to worry about,
but often it may be attractive to share the system files between them. There are a lot of
things to consider here:

• Obviously, any changeable data specific to a system can’t be shared.

• To ensure that things don’t change, you should mount shared resources read-only.

• Refer to Table 32-1 on page 594 for an overview of FreeBSD installed directories.
Of these directories, only /etc and /usr/local/etc must be specific for a particular
system, though there are some other issues:

• Installing ports, for example, will install ports for all systems. That’s not
necessarily a bad thing, but if you have two systems both installing software in
the same directory, you can expect conflicts. It’s better to designate one system,
possibly the host with the disk, to perform these functions.

• If you share /boot and make some configuration changes, the options will apply
to all systems.

• When building system software, you can use the same /usr/src and /usr/obj
directories as long as all systems maintain the same release of FreeBSD. You can
ev en hav e different kernels: each kernel build directory carries the name of the
configuration file, which by convention matches the name of the system.

The big problem is /etc. In particular, /etc/rc.conf contains information like the system
name. One way to handle this is to have a separate /etc directory for each system. This
may seem reasonable, because /etc is only about 1.5 MB in size. In fact, this implies
mounting the entire root file system with the other top-level directories, and that means
more like 60 MB.

Files you might need to change 569

30 June 2003, 15:06:40 The Complete FreeBSD (configfiles.mm), page 569

/etc/crontab
/etc/crontab describes the jobs to be performed by cron on behalf of the system. You
don’t hav e to use this file at all; you can use each user’s crontab files instead. Note that
this file has a slightly different format from the other crontab files. A user’s crontab
contains entries like this:

0 0 * * * /home/grog/Scripts/rotate-log

This line runs the script /home/grog/Scripts/rotate-log at midnight every day. If you put
this entry into /etc/crontab, you need to tell cron which user to run it as. Do this by
putting the name of the user before the command:

0 0 * * * grog /home/grog/Scripts/rotate-log

See page 151 for more details about cron.

/etc/csh.cshrc, /etc/csh.login, /etc/csh.logout
These are default initialization files for csh. See the man page csh(1) for more details.

/etc/dhclient.conf
/etc/dhclient.conf describes the client side of DHCP services. Normally it’s empty. We
discussed dhcp on 302.

/etc/disktab
/etc/disktab contains descriptions of disk geometries for disklabel. This is almost
obsolete.

/etc/ftpusers
/etc/ftpusers is a list of users who are not allowed to connect to this system using ftp.
It’s a strong contender for the prize for the worst-named file in the system.

/etc/hosts
For a small network, especially if you’re not permanently connected to the Internet, you
have the option of placing the addresses of the systems you want to talk to in a file called
/etc/hosts. This file is simply a list of IP addresses and host names, for example:

Local network host addresses
#
loopback address for all systems
127.1 loopback local localhost
domain example.com.
#
223.147.37.1 freebie freebie.example.org # FreeBSD 3.0
223.147.37.2 presto.example.org presto # 66 MHz 486 (BSD UNIX)

570 Chapter 30: FreeBSD configuration files

30 June 2003, 15:06:40 The Complete FreeBSD (configfiles.mm), page 570

Before the days of DNS, this was the way to resolve IP addresses. It only works locally,
and even there it’s a pain to maintain: you need to propagate every update to every
machine on the network. As we saw in Chapter 21, it’s far preferable to run named, even
if you’re not connected to the Internet.

/etc/hosts.equiv
/etc/hosts.equiv is a list of hosts whose users may use rsh to access this system without
supplying a password. rsh is now obsolete, so it’s unlikely you’ll need to change this
file. See the description of ssh on page 419 for a replacement.

/etc/hosts.lpd
/etc/hosts.lpd is a list of hosts that can use the lpd spooler on this system.

/etc/inetd.conf
/etc/inetd.conf is the configuration file for inetd, the Internet daemon. It dates back to the
original implementation of TCP/IP in 4.2BSD, and the format is the same for all versions
of UNIX. We hav e looked at various modifications to this file throughout the network
part of the book. See the index (inetd.conf) and the man page inetd.conf(5) for further
details. FreeBSD now disables all services by default to limit security exposures, so
there’s a good chance you’ll have to edit this file.

/etc/login.access
/etc/login.access is a file that limits remote access by individual users. We don’t look at
it in more detail here.

/etc/login.conf
/etc/login.conf describes user parameters set at login time.

In UNIX tradition, root has been the owner of the universe. This is rather primitive, and
the 4.3BSD Net/2 relase introduced login classes, which determine session accounting,
resource limits and user environment settings. Many programs use the database
described in /etc/login.conf to set up a user’s login environment and to enforce policy,
accounting and administrative restrictions. The login class database also provides the
means to authenticate users to the system and to choose the type of authentication.

When creating a user, you may optionally enter a class name, which should match an
entry in /etc/login.conf—see page 146 for more details. If you don’t, the system uses the
entry default for a non-root user. For the root user, the system uses the entry root if it
is present, and default otherwise.

The structure of the login configuration database is relatively extensive. It describes a
number of parameters, many of which can have two values: a current value and a
maximum value. On login, the system sets the values to the -cur (current) value, but the
user may, at his option, increase the value to the -max (maximum) value. We’ll look at
the default entry for an example.

Upgrading ker nel and userland 597

30 June 2003, 15:06:40 The Complete FreeBSD (upgrading.mm), page 597

The solution to this issue is called mergemaster, a script that helps you to upgrade the
configuration files. We’ll look at it in more detail below, but at this point you should
know that you need to run it with the -p (pre-build) option:

mergemaster -p

As we’ve seen in table 32-1, the installworld target changes a number of directories.
Sometimes, though, it leaves old binaries behind: it doesn’t remove anything that it
doesn’t replace. The result can be that you end up using old programs that have long
passed their use-by date. One solution to this problem is to look at the last modification
date of each program in the directories. For example, if you see:

$ ls -lrt /usr/sbin
-r-xr-xr-x 1 root wheel 397 Jul 14 11:36 svr4
-r-xr-xr-x 1 root wheel 422 Jul 14 11:29 linux
-r-xr-xr-x 1 root wheel 142080 Jul 13 17:20 sshd
...
-r-xr-xr-x 1 root wheel 68148 Jul 13 17:16 uuchk
-r-xr-xr-x 1 root wheel 6840 Jan 5 2002 ispppcontrol
-r-xr-xr-x 1 root wheel 27996 Apr 21 2001 k5stash
-r-xr-xr-x 1 root wheel 45356 Apr 21 2001 ktutil
-r-xr-xr-x 1 root wheel 11124 Apr 21 2001 kdb_util
-r-xr-xr-x 1 root wheel 6768 Apr 21 2001 kdb_init

It’s fairly clear that the files dated April 2001 have not just been installed, so they must be
out of date. You can use a number of techniques to delete them; one might be:

find . -mtime +10 | xargs rm

This command removes all files in the current directory (.) that are older than 10 days
(+10). Of course, this method will only work if you haven’t installed anything in these
directories yourself. You shouldn’t hav e done so; that’s the purpose of the directory
hierarchy /usr/local, to ensure that you keep system files apart from ports and private
files.

Be careful with /usr/lib: a number of ports refer to libraries in this directory hierarchy,
and if you delete them, the ports will no longer work. In general there’s no problem with
old libraries in /usr/lib, unless they take up too much space, so you’re safer if you don’t
clean out this directory hierarchy.

Note that you need to specify the KERNCONF parameter to all the targets relating to kernel
builds.

Upgrading the kernel
There are two reasons for building a new kernel: it might be part of the upgrade process,
which is what we’ll look at here, or you may build a kernel from your current sources to
add functionality to the system. We’ll look at this aspect in Chapter 33.

598 Chapter 32: Updating the system software

30 June 2003, 15:06:40 The Complete FreeBSD (upgrading.mm), page 598

One point to notice is that if you’re upgrading from an older custom configuration file,
you could have a lot of trouble. We’ll see a strategy for minimizing the pain on page 616.
In addition, when upgrading to FreeBSD Release 5 from an older release of FreeBSD,
you need to install a file /boot/device.hints, which you can typically copy from
/usr/src/sys/i386/conf/GENERIC.hints:

cp /usr/src/sys/i386/conf/GENERIC.hints /boot/device.hints

See page 608 for more details.

When upgrading the kernel, you might get error messages like this one:

config GENERIC
config: GENERIC:71: devices with zero units are not likely to be correct

Alternatively, you might get a clearer message:

config GENERIC
../../conf/files: coda/coda_fbsd.c must be optional, mandatory or standard
Your version of config(8) is out of sync with your kernel source.

Apart from that, you might find that the kernel fails to link with lots of undefined
references. This, too, could mean that the config program is out of synchronization with
the kernel modules. In each case, build and install the new version of config:

cd /usr/src/usr.sbin/config
make depend all install clean

You need to make clean at the end since this method will store the object files in non-
standard locations.

Upgrading the boot files
At the time of writing, it’s still necessary to install the files in /boot separately. It’s
possible that this requirement will go away in the future. There are two steps: first you
build and install the boot files in the /boot directory, then you install them on your boot
disk. Assuming your system disk is the SCSI disk /dev/da0, you would perform some of
the following steps.

cd /usr/src/sys build directory
make install build and install the bootstraps
bsdlabel -B da0 Either, for a dedicated disk
bsdlabel -B da0s1 Or, for a PC disk slice
boot0cfg -B da0 Or, booteasy for a dedicated PC disk

If you have a dedicated disk, which is normal on a non-Intel platform, use the first
bsdlabel invocation to install the bootstrap (boot1) at the beginning of the disk.
Otherwise, install boot1 at the beginning of your FreeBSD slice and use boot0cfg to
install the boot0 boot manager at the beginning of the disk.

