
3
Care and feeding of source trees

In Chapter 2, Unpacking the goodies, we saw how to create an initial source tree. It won’t
stay in this form for long. During a port, the source tree is constantly changing:

• Before you can even start, you may apply patches to the tree to bring it up to date.

• After unpacking and possibly patching, you may find that you have to clean out junk left
behind from a previous port.

• In order to get it to compile in your environment, you perform some form of configura-
tion, which modifies the tree to some extent. We’ll look at package configuration in
Chapter 4, Package configuration.

• During compilation, you add many new files to the tree. You may also create new subdi-
rectories.

• After installation, you remove the unneeded files, for example object files and possibly
the final installed files.

• After cleaning up, you may decide to archive the tree again to save space on disk.

Modifying the source tree brings uncertainty with it: what is original, what have I modified,
how do I remove the changes I have made and get back to a clean, well-defined starting point?
In this chapter we’ll look at how to get to a clean starting point. Usually this will be the case
after you have extracted the source archive, but frequently you need to add patches or remove
junk. We’ll also look at how to build a tree with sources on CD-ROM, how to recognize the
changes you have made and how to maintain multiple versions of your software.

Updating old archives
You don’t always need to get a complete package: another possibility is that you might
already have an older version of the package. If it is large — again, for example, the GNU C
compiler — you might find it better to get patches and update the source tree. Strictly speak-
ing, a patch is any kind of modification to a source or object file. In UNIX parlance, it’s
almost always a diff, a file that describes how to modify a source file to produce a newer ver-
sion. Diffs are almost always produced by the diff program, which we describe in Chapter 10,

29

5 February 2005 02:09

30

Where to go from here, page 144. In our case study, we hav e gcc version 2.5.6 and want to
update to 2.5.8. We discover the following files on the file server:

ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
-rw-rw-r-- 1 117 1001 10753 Dec 12 19:15 gcc-2.5.6-2.5.7.diff.gz
-rw-rw-r-- 1 117 1001 14726 Jan 24 09:02 gcc-2.5.7-2.5.8.diff.gz
-rw-rw-r-- 1 117 1001 5955006 Dec 22 14:16 gcc-2.5.7.tar.gz
-rw-rw-r-- 1 117 1001 5997896 Jan 24 09:03 gcc-2.5.8.tar.gz
226 Transfer complete.
ftp>

In other words, we have the choice of copying the two diff files gcc-2.5.6-2.5.7.diff.gz and
gcc-2.5.7-2.5.8.diff.gz, a total of 25 kB, and applying them to your source tree, or copying the
complete 6 MB archive gcc-2.5.8.tar.gz.

Patch
diff files are reasonably understandable, and you can apply the patches by hand if you want,
but it’s obviously easier and safer to use a program to apply the changes. This is the purpose
of patch. patch takes the output of the program diff and uses it to update one or more files. To
apply the patch, it proceeds as follows:

1. First, it looks for a file header. If it finds any junk before the file header, it skips it and
prints a message to say that it has done so. It uses the file header to recognize the kind of
diff to apply.

2. It renames the old file by appending a string to its name. By default, the string is .orig,
so foo.c would become foo.c.orig.

3. It then creates a new file with the name of the old file, and copies the old file to the new
file, modifying it with the patches as it goes. Each set of changes is called a hunk.

The way patch applies the patch depends on the format. The most dangerous kind are ed style
diffs, because there is no way to be sure that the text is being replaced correctly. With context
diffs, it can check that the context is correct, and will look a couple of lines in each direction
if it doesn’t find the old text where it expects it. You can set the number of lines it will look
(the fuzz factor) with the -F flag. It defaults to 2.

If the old version of the file does not correspond exactly to the old version used to make the
diff, patch may not be able to find the correct place to insert the patch. Except for ed format
diffs, it will recognize when this happens, and will print an error message and move the corre-
sponding hunk to a file with the suffix .rej (for reject).

A typical example are the patches for X11R5. You might start with the sources supplied on
the companion CD-ROM to X Window System Administrator’s Guide by Linda Mui and Eric
Pearce. This CD-ROM includes the complete X11R5 sources to patch level 21. At the time
of writing, five further patches to X11R5 have been released. To bring the source tree up to
patch level 26, you would proceed as follows:

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 31

First, read the header of the patch file. As we hav e seen, patch allows text before the first file
header, and the headers frequently contain useful information. Looking at patch 22, we see:

$ gunzip < /cd0/x11r5/fix22.gz | more
X11 R5 Public Patch #22

MIT X Consortium

To apply this patch:

cd to the top of the source tree (to the directory containing the
"mit" and "contrib" subdirectories) and do:

patch -p -s < ThisFile

Patch works silently unless an error occurs. You are likely to get the
following warning messages, which you can ignore:

In this example we have used gunzip to look at the file directly; we could just as well have
used GNU zcat. The patch header suggests the flags -s and -p. The -s flag to patch tells it
to perform its work silently—otherwise it prints out lots of information about what it is doing
and why. The -p flag is one of the most complicated to use: it specifies the pathname strip
count, how to treat the directory part of the file names in the header. We’ll look at it in more
detail in the section Can’t find file to patch on page 36.

This information is important: patch is rather like a chainsaw without a guard, and if you start
it without knowing what you are doing, you can make a real mess of its environment. In this
case, we should find that the root of our source tree looks like:

$ cd /usr/x11r5
$ ls -FC mit
Imakefile RELNOTES.ms extensions/ rgb/
LABEL bug-report fonts/ server/
Makefile clients/ hardcopy/ util/
Makefile.ini config/ include/
RELNOTES.PS demos/ lib/
RELNOTES.TXT doc/ man/
... that looks OK, we’re in the right place
$ gunzip < /cd0/x11r5/fix22.gz | patch -p -s

We’v e taken another liberty in this example: since the patch file was on CD-ROM in com-
pressed form, we would have needed to extract it to disk in order to patch the way the file
header suggests. Instead, we just gunzip directly into the patch program.

It’s easy to make mistakes when patching. If you try to apply a patch twice, patch will notice,
but you can persuade it to reapply the patch anyway. In this section, we’ll look at the havoc
that can occur as a result. In addition, we’ll disregard some of the advice in the patch header.
This is the way I prefer to do it:

$ gunzip < /cd0/x11r5/fix23.gz | patch -p &> patch.log

This invocation allows patch to say what it has to say (no -s flag), but copies both the stan-
dard output and the error output to the file patch.log, so nothing appears on the screen. You
can, of course, pipe the output through the tee program, but in practice things happen so fast

5 February 2005 02:09

32

that any error message will usually run off the screen before you can read it. It certainly
would have done so here: patch.log had a length of 930 lines. It starts with

Hmm... Looks like a new-style context diff to me...
The text leading up to this was:

| Release 5 Public Patch #23
| MIT X Consortium
... followed by the complete header
|Prereq: public-patch-22

This last line is one safeguard that patch offers to ensure that you are working with the correct
source tree. If patch finds a Prereq: line in the file header, it checks that this text appears in
the input file. For comparison, here’s the header of mit/bug-report:

To: xbugs@expo.lcs.mit.edu
Subject: [area]: [synopsis] [replace with actual area and short description]

VERSION:
R5, public-patch-22
[MIT public patches will edit this line to indicate the patch level]

In this case, patch finds the text. When it does, it prints out the corresponding message:

|
|*** /tmp/,RCSt1006225 Tue Mar 9 14:40:48 1993
--- mit/bug-report Tue Mar 9 14:37:04 1993
Good. This file appears to be the public-patch-22 version.

This message shows that it has found the text in mit/bug-report. The first hunk in any X11 diff
changes this text (in this case to public-patch-23), so that it will notice a repeated application
of the patch. Continuing,

Patching file mit/bug-report using Plan A...
Hunk #1 succeeded at 2.
Hmm... The next patch looks like a new-style context diff to me...
The text leading up to this was:

|*** /tmp/,RCSt1005203 Tue Mar 9 13:45:42 1993
--- mit/lib/X/Imakefile Tue Mar 9 13:45:45 1993
Patching file mit/lib/X/Imakefile using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 856.
Hunk #3 succeeded at 883.
Hunk #4 succeeded at 891.
Hunk #5 succeeded at 929.
Hunk #6 succeeded at 943.
Hunk #7 succeeded at 968.
Hunk #8 succeeded at 976.
Hmm... The next patch looks like a new-style context diff to me...

This output goes on for hundreds of lines. What happens if you make a mistake and try

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 33

again?

$ gunzip < /cd0/x11r5/fix23.gz | patch -p &> patch.log
This file doesn’t appear to be the public-patch-22 version--patch anyway? [n] y
bad choice...
Reversed (or previously applied) patch detected! Assume -R? [y] RETURN pressed
Reversed (or previously applied) patch detected! Assume -R? [y] RETURN pressed
Reversed (or previously applied) patch detected! Assume -R? [y] ˆC$

The first message is printed because patch didn’t find the text public-patch-22 in the file
(in the previous step, patch changed it to read public-patch-23). This message also
appears in patch.log. Of course, in any normal application you should immediately stop and
check what’s gone wrong. In this case, I make the incorrect choice and go ahead with the
patch. Worse still, I entered RETURN to the next two prompts. Finally, I came to my senses
and hit CTRL-C, the interrupt character on my machine, to stop patch.

The result of this is that patch removed the patches in the first two files (the -R flag tells patch
to behave as if the files were reversed, which has the same effect as removing already applied
patches). I now hav e the first two files patched to patch level 22, and the others patched to
patch level 23. Clearly, I can’t leave things like this.

Tw o wrongs don’t normally make a right, but in this case they do. We do it again, and what
we get this time looks pretty much the same as the time before:

$ gunzip < /cd0/x11r5/fix23.gz | patch -p &> mit/patch.log
Reversed (or previously applied) patch detected! Assume -R? [y] ˆC$

In fact, this time things went right, as we can see by looking at patch.log:

|*** /tmp/,RCSt1006225 Tue Mar 9 14:40:48 1993
--- mit/bug-report Tue Mar 9 14:37:04 1993
Good. This file appears to be the public-patch-22 version.
Patching file mit/bug-report using Plan A...
Hunk #1 succeeded at 2.
Hmm... The next patch looks like a new-style context diff to me...
The text leading up to this was:

|*** /tmp/,RCSt1005203 Tue Mar 9 13:45:42 1993
--- mit/lib/X/Imakefile Tue Mar 9 13:45:45 1993
Patching file mit/lib/X/Imakefile using Plan A...
Hunk #1 succeeded at 1.
(lots of hunks succeed)
Hmm... The next patch looks like a new-style context diff to me...
The text leading up to this was:

|*** /tmp/d03300 Tue Mar 9 09:16:46 1993
--- mit/lib/X/Ximp/XimpLCUtil.c Tue Mar 9 09:16:41 1993
Patching file mit/lib/X/Ximp/XimpLCUtil.c using Plan A...
Reversed (or previously applied) patch detected! Assume -R? [y]

This time the first two files have been patched back to patch level 23, and we stop before

5 February 2005 02:09

34

doing any further damage.

Hunk #3 failed

Patch makes an implicit assumption that the patch was created from an identical source tree.
This is not always the case—you may have changed something in the course of the port. The
differences frequently don’t cause problems if they are an area unrelated to the patch. In this
example, we’ll look at how things can go wrong. Let’s consider the following situation: dur-
ing a previous port of X11R5 pl 22,* you ran into some problems in mit/lib/Xt/Selection.c and
fixed them. The original text read:

if (XtWindow(widget) == window)
XtAddEventHandler(widget, mask, TRUE, proc, closure);

else {
Widget w = XtWindowToWidget(dpy, window);
RequestWindowRec *requestWindowRec;
if (w != NULL && w != widget) widget = w;
if (selectWindowContext == 0)

selectWindowContext = XUniqueContext();

You had problems with this section, so you commented out a couple of lines:

if (XtWindow(widget) == window)
XtAddEventHandler(widget, mask, TRUE, proc, closure);

else {
/* This doesn’t make any sense at all - ignore
* Widget w = XtWindowToWidget(dpy, window); */

RequestWindowRec *requestWindowRec;
/* if (w != NULL && w != widget) widget = w; */
if (selectWindowContext == 0)

selectWindowContext = XUniqueContext();

Back in the present, you try to apply patch 24 to this file:

$ gunzip < /cd0/x11r5/fix24.gz | patch -p &> mit/patch.log
$

So far so good. But in patch.log we find

|*** /tmp/da4854 Mon May 17 18:19:57 1993
--- mit/lib/Xt/Selection.c Mon May 17 18:19:56 1993
Patching file mit/lib/Xt/Selection.c using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 70.
Hunk #3 failed at 361.
Hunk #4 succeeded at 1084.
Hunk #5 succeeded at 1199.
1 out of 5 hunks failed--saving rejects to mit/lib/Xt/Selection.c.rej

What does this mean? There’s nothing for it but to look at the files concerned. In fix24 we
find

* The abbreviation pl is frequently used to mean patch level.

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 35

*** /tmp/da4854 Mon May 17 18:19:57 1993
--- mit/lib/Xt/Selection.c Mon May 17 18:19:56 1993

*** 1,4 ****
this must be hunk 1
! /* $XConsortium: Selection.c,v 1.74 92/11/13 17:40:46 converse Exp $ */

/***
Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts,

--- 1,4 ----
! /* $XConsortium: Selection.c,v 1.78 93/05/13 11:09:15 converse Exp $ */

/***
Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts,

*** 70,75 ****
--- 70,90 ----
this must be hunk 2

Widget w; /* unused */

*** 346,359 ****
and this must be hunk 3, the one that failed
{

Display *dpy = req->ctx->dpy;
Window window = req->requestor;

! Widget widget = req->widget;
... etc

*** 1068,1073 ****
--- 1084,1096 ----
hunk 4

*** 1176,1181 ****
--- 1199,1213 ----
and hunk 5--at least the count is correct

patch put the rejects in Selection.c.rej. Let’s look at it:

*** 346,359 ****
{

Display *dpy = req->ctx->dpy;
Window window = req->requestor;

! Widget widget = req->widget;

if (XtWindow(widget) == window)
! XtAddEventHandler(widget, mask, TRUE, proc, closure);

else {
- Widget w = XtWindowToWidget(dpy, window);

RequestWindowRec *requestWindowRec;
- if (w != NULL && w != widget) widget = w;

if (selectWindowContext == 0)
selectWindowContext = XUniqueContext();

if (XFindContext(dpy, window, selectWindowContext,

5 February 2005 02:09

36

--- 361,375 ----
{

Display *dpy = req->ctx->dpy;
Window window = req->requestor;

! Widget widget = XtWindowToWidget(dpy, window);

+ if (widget != NULL) req->widget = widget;
+ else widget = req->widget;
+

if (XtWindow(widget) == window)
! XtAddEventHandler(widget, mask, False, proc, closure);

else {
RequestWindowRec *requestWindowRec;
if (selectWindowContext == 0)

selectWindowContext = XUniqueContext();
if (XFindContext(dpy, window, selectWindowContext,

The characters + and - at the beginning of the lines in this hunk identify it as a unified context
diff. We’ll look at them in more detail in Chapter 10, Where to go from here, page 147. Not
surprisingly, they are the contents of hunk 3. Because of our fix, patch couldn’t find the old
text and thus couldn’t process this hunk. In this case, the easiest thing to do is to perform the
fix by hand. To do so, we need to look at the partially fixed file that patch created,
mit/lib/Xt/Selection.c. The line numbers have changed, of course, but since hunk 3 wasn’t
applied, we find exactly the same text as in mit/lib/Xt/Selection.c.orig, only now it starts at
line 366. We can effectively replace it by the “after” text in Selection.c.rej, remembering of
course to remove the indicator characters in column 1.

Can’t find file to patch

Sometimes you’ll see a message like:

$ patch -p <hotstuff.diff &>patch.log
Enter name of file to patch:

One of the weaknesses of the combination of diff and patch is that it’s easy to get the file
names out of sync. What has probably happened here is that the file names don’t agree with
your source tree. There are a number of ways for this to go wrong. The way that patch treats
the file names in diff headers depends on the -p flag, the so-called pathname strip count:

• If you omit the -p flag, patch strips all directory name information from the file names
and leaves just the filename part. Consider the following diff header:

*** config/sunos4.h˜ Wed Feb 29 07:13:57 1992
--- config/sunos4.h Mon May 17 18:19:56 1993

Relative to the top of the source tree, the file is in the directory config. If you omit the -p
flag, patch will look for the file sunos4.h, not config/sunos4.h, and will not find it.

• If you specify -p, patch keeps the complete names in the headers.

• If you specify -pn, patch will remove the first n directory name components in the path-
name. This is useful when the diffs contain incorrect base path names. For example, you

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 37

may find a diff header which looks like:

*** /src/freesoft/gcc-patches/config/sunos4.h˜ Wed Feb 29 07:13:57 1992
--- /src/freesoft/gcc-patches/config/sunos4.h Mon May 17 18:19:56 1993

Unless your source tree also happens to be called /src/freesoft/gcc-patches, patch won’t
be able to find the files if you use the -p flag with no argument. Assuming that you are
in the root directory of the package (in other words, the parent directory of config), you
really don’t want to know about the /src/freesoft/gcc-patches/ component. This path-
name consists of four parts: the leading / making the pathname absolute, and the three
directory names src, freesoft and gcc-patches. In this case, you can enter

$ patch -p4 <hotstuff.diff &>patch.log

The -p4 tells patch to ignore the first four pathname components, so it would read thes
filenames just as config/sunos4.h˜ and config/sunos4.h.

In addition to the problem of synchronizing the path names, you may run into broken diffs
which don’t specify pathnames, even though the files belong to different directories. We’ll
see how easy it is to make this kind of mistake in Chapter 10, Where to go from here, page .
For example, you may find that the diff headers look like:

*** sunos4.h˜ Wed Feb 29 07:13:57 1992
--- sunos4.h Mon May 17 18:19:56 1993

This kind of diff is a real nuisance: you at least need to search for the file sunos4.h, and if
you’re unlucky you’ll find more than one and have to examine the patches to figure out which
one is intended. Then you need to give this name to the prompt, and patch should perform the
patches. Unfortunately, in a large collection of diffs, this can happen dozens of times.

I can’t seem to find a patch in there

Sometimes you will get what looks like a perfectly good unified context diff, but when you
run patch against it, you get a message:

$ patch <diffs
Hmm... I can’t seem to find a patch in there anywhere.
$

Some versions of patch don’t understand unified diffs, and since all versions skip anything
they don’t understand, this could be the result. The only thing for it is to get a newer version
of patch—see Appendix E, Where to get sources, for details.

Malformed patch

If patch finds the files and understands the headers, you could still run into problems. One of
the most common is really a problem in making the diffs:

$ patch <diffs
Hmm... Looks like a unified diff to me...
The text leading up to this was:

5 February 2005 02:09

38

|--- real-programmers.ms˜ Wed Dec 7 13:17:47 1994
+++ real-programmers.ms Wed Dec 7 14:53:19 1994
Patching file real-programmers.ms using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 54.
patch: **** malformed patch at line 398: No newline at end of file

Well, it tells you what happened: diff will print this message if the last character in a file is not
\n. Most versions of patch don’t like the message. You need to edit the diff and remove the
offending line.

Debris left behind by patch

At the end of a session, patch leaves behind a number of files. Files of the form filename.orig
are the original versions of patched files. The corresponding filenames are the patched ver-
sions. The length of the suffix may be a problem if you are using a file system with a limited
filename length; you can change it (perhaps to the emacs standard suffix ˜) with the -b flag.
In some versions of patch, ˜ is the default.

If any patches failed, you will also have files called filename.rej (for “rejected”). These con-
tain the hunks that patch could not apply. Another common suffix for rejects is #. Again, you
can change the suffix, this time with the -r flag. If you have any .rej files, you need to look at
them and find out what went wrong. It’s a good idea to keep the .orig files until you’re sure
that the patches have all worked as indicated.

Pruning the tree
Making clean distribution directories is notoriously difficult, and there is frequently irrelevant
junk in the archive. For example, all emacs distributions for at least the last 6 years have
included a file etc/COOKIES. As you might guess from the name, this file is a recipe for
cookies, based on a story that went round Usenet years ago. This file is not just present in the
source tree: since the whole subdirectory etc gets installed when you install emacs, you end
up installing this recipe as well. This particular directory contains a surprising number of
files, some of them quite amusing, which don’t really have much to do with emacs.

This is a rather extreme case of a common problem: you don’t need some of the files on the
distribution, so you could delete them. As far as I know, emacs works just as well without the
cookie recipe, but in many cases, you can’t be as sure. In addition, you might run into other
problems: the GNU General Public License requires you to be prepared to distribute the com-
plete contents of the source tree if so requested. You may think that it’s an accident that the
cookie recipe is in the source tree, but in fact it’s a political statement*, and you are required
by the terms of the GNU General Public License to keep the file in order to give it to anybody
who might want it.

* To quote the beginning of the file: Someone sent this in from California, and we decided to extend our
campaign against information hoarding to recipes as well as software. (Recipes are the closest thing,
not involving computers, to software.)

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 39

This is a rather extreme example, but you might find any of the following in overgrown trees:

• Old objects, editor backups and core dumps from previous builds. They may or may not
go away with a make clean.

• Test programs left behind by somebody trying to get the thing to work on his platform.
These probably will not go away with a make clean.

• Formatted documentation. Although the Makefile should treat documents like objects
when cleaning the tree, a surprising number of packages format and install documenta-
tion, and then forget about it when it comes to tidying it away again.

• Old mail messages, only possibly related to the package. I don’t know why this is, but
mail messages seem to be the last thing anybody wants to remove, and so they continue
to exist for years in many trees. This problem seems to be worse in proprietary packages
than in free packages.

The old objects are definitely the worst problem: make can’t tell that they don’t belong to this
configuration, and so they just prevent the correct version of the object being built. Depend-
ing on how different the architectures are, you may even find that the bogus objects fool the
linker, too, and you run into bizarre problems when you try to execute.

Save the cleaned archive
If you had to go to any trouble (patches or cleanup) to get to a clean starting point for the port,
save the cleaned archive. You won’t need it again, of course, but Murphy’s law will ensure
that if you don’t sav e it, you will need it again.

Handling trees on CD-ROM
It’s convenient to have your source tree on CD-ROM: you save disk space, and you can be
sure that you don’t accidentally change anything. Unfortunately, you also can’t deliberately
change anything. Normal Makefiles expect to put their objects in the source tree, so this com-
plicates the build process significantly.

In the next two sections, we’ll look at a couple of techniques that address this problem. Both
use symbolic links.

Link trees
You can simulate a writeable tree on disk by creating symbolic links to the sources on CD-
ROM. This way, the sources remain on the CD-ROM, but the objects get written to disk.
From your viewpoint, it looks as if all the files are in the same directory. For example, assume
you have a CD-ROM with a directory /cd0/src/find containing the sources to find:

$ ls -FC /cd0/src/find
COPYING Makefile config.status* lib/
COPYING.LIB Makefile.in configure* locate/
ChangeLog NEWS configure.in man/

5 February 2005 02:09

40

INSTALL README find/ xargs/

The / at the end of the file names indicate that these files are directories; the * indicates that
they are executables. You could create a link tree with the following commands:

$ cd /home/mysrc/find put the links here
$ for i in /cd0/src/find/*; do
> ln -s $i .
> done
$ ls -l see what we got
total 16
lrwxrwxrwx COPYING -> /cd0/src/find/COPYING
lrwxrwxrwx COPYING.LIB -> /cd0/src/find/COPYING.LIB
lrwxrwxrwx ChangeLog -> /cd0/src/find/ChangeLog
lrwxrwxrwx INSTALL -> /cd0/src/find/INSTALL
lrwxrwxrwx Makefile -> /cd0/src/find/Makefile
lrwxrwxrwx Makefile.in -> /cd0/src/find/Makefile.in
lrwxrwxrwx NEWS -> /cd0/src/find/NEWS
lrwxrwxrwx README -> /cd0/src/find/README
lrwxrwxrwx config.status -> /cd0/src/find/config.status
lrwxrwxrwx configure -> /cd0/src/find/configure
lrwxrwxrwx configure.in -> /cd0/src/find/configure.in
lrwxrwxrwx find -> /cd0/src/find/find
lrwxrwxrwx lib -> /cd0/src/find/lib
lrwxrwxrwx locate -> /cd0/src/find/locate
lrwxrwxrwx man -> /cd0/src/find/man
lrwxrwxrwx xargs -> /cd0/src/find/xargs

I omitted most of the information that is printed by ls -l in order to get the information on the
page: what interests us here is that all the files, including the directories, are symbolic links.
In some cases, this is what we want: we don’t need to create copies of the directories on the
hard disk when a single link to a directory on the CD-ROM does it just as well. In this case,
unfortunately, that’s not the way it is: our sources are in the directory find, and that’s where we
will have to write our objects. We need to do the whole thing again for the subdirectory find:

$ cd ˜mysource/find change to the source directory on disk
$ rm find get rid of the directory symlink
$ mkdir find and make a directory
$ cd find and change to it
$ for i in /cd0/src/find/find/*; do
> ln -s $i .
> done
$ ls -l
total 18
lrwxrwxrwx Makefile -> /cd0/src/find/find/Makefile
lrwxrwxrwx Makefile.in -> /cd0/src/find/find/Makefile.in
lrwxrwxrwx defs.h -> /cd0/src/find/find/defs.h
lrwxrwxrwx find -> /cd0/src/find/find/find
lrwxrwxrwx find.c -> /cd0/src/find/find/find.c
lrwxrwxrwx fstype.c -> /cd0/src/find/find/fstype.c
lrwxrwxrwx parser.c -> /cd0/src/find/find/parser.c
lrwxrwxrwx pred.c -> /cd0/src/find/find/pred.c
lrwxrwxrwx tree.c -> /cd0/src/find/find/tree.c

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 41

lrwxrwxrwx util.c -> /cd0/src/find/find/util.c
lrwxrwxrwx version.c -> /cd0/src/find/find/version.c

Yes, this tree really does have a directory called find/find/find, but we don’t need to worry
about it. Our sources and our Makefile are here. We should now be able to move back to the
top-level directory and perform the make:

$ cd ..
$ make

This is a relatively simple example, but it shows two important aspects of the technique:

• You don’t need to create a symlink for every single file. Although symlinks are relatively
small — in this case, less than 100 bytes—they occupy up to 1024 bytes of disk space per
link, and you can easily find yourself taking up a megabyte of space just for the links.

• On the other hand, you do need to make all the directories where output from the build
process is stored. You need to make symlinks to the existing files in these directories.

An additional problem with this technique is that many tools don’t test whether they hav e suc-
ceeded in creating their output files. If they try to create files on CD-ROM and don’t notice
that they hav e failed, you may get some strange and misleading error messages later on.

Object links on CD-ROM
Some CD-ROMs, notably those derived from the Berkeley Net/2 release, have a much better
idea: the CD-ROM already contains a symlink to a directory where the object files are stored.
For example, the FreeBSD 1.1 CD-ROM version of find is stored on
/cd0/filesys/usr/src/usr.bin/find and contains:

total 106
drwxrwxr-x 2 bin 2048 Oct 28 1993 .
drwxrwxr-x 153 bin 18432 Nov 15 23:28 ..
-rw-rw-r-- 1 bin 168 Jul 29 1993 Makefile
-rw-rw-r-- 1 bin 3157 Jul 29 1993 extern.h
-rw-rw-r-- 1 bin 13620 Sep 7 1993 find.1
-rw-rw-r-- 1 bin 5453 Jul 29 1993 find.c
-rw-rw-r-- 1 bin 4183 Jul 29 1993 find.h
-rw-rw-r-- 1 bin 20736 Sep 7 1993 function.c
-rw-rw-r-- 1 bin 3756 Oct 17 1993 ls.c
-rw-rw-r-- 1 bin 3555 Jul 29 1993 main.c
-rw-rw-r-- 1 bin 3507 Jul 29 1993 misc.c
lrwxrwxr-x 1 root 21 Oct 28 1993 obj -> /usr/obj/usr.bin/find
-rw-rw-r-- 1 bin 7766 Jul 29 1993 operator.c
-rw-rw-r-- 1 bin 4657 Jul 29 1993 option.c
-rw-rw-r-- 1 root 2975 Oct 28 1993 tags

All you have to do in this case is to create a directory called /usr/obj/usr.bin/find. The Make-
files are set up to compile into that directory.

5 February 2005 02:09

42

Tracking changes to the tree
The most obvious modification that you make to a source tree is the process of building: the
compiler creates object files* and the loader creates executables. Documentation formatters
may produce formatted versions of the source documentation, and possibly other files are cre-
ated as well. Whatever you do with these files, you need to recognize which ones you have
created and which ones you have changed. We’ll look at these aspects in the following sec-
tions.

Timestamps
It’s easy enough to recognize files that have been added to the source tree since its creation:
since they are all newer than any file in the original source tree, the simple command ls -lt
(probably piped into more or less) will display them in the reverse order in which they were
created (newest first) and thus separate the new from the old.

Every UNIX file and directory has three timestamps. The file system represents timestamps
in the time_t format, the number of seconds elapsed since January 1, 1970 UTC. See Chap-
ter 16, Timekeeping, page 270, for more details. The timestamps are:

• The last modification timestamp, updated every time the file or directory is modified.
This is what most users think of as the file timestamp. You can display it with the ls -l
command.

• The last access timestamp, updated every time a data transfer is made to or from the file.
You can display it with the ls -lu command. This timestamp can be useful in a number of
different places.

• The status change timestamp (at least, that’s what my header files call it). This is a sort
of kludged† last modification timestamp for the inode, that part of a file which stores
information about the file. The most frequent changes which don’t affect the other time-
stamps are change in the number of links or the permissions, which normally isn’t much
use to anybody. On the other hand, the inode also contains the other timestamps, so if
this rule were enforced rigidly, a change to another timestamp would also change the sta-
tus change timestamp. This would make it almost completely useless. As a result, most
implementations suppress the change to the status change timestamp if only the other
timestamps are modified. If you want, you can display the status change timestamp with
the ls -lc command.

Whichever timestamp you choose to display with ls -l, you can cause ls to sort by it with the
-t flag. Thus, ls -lut displays and sorts by the last access timestamp.

Of these three timestamps, the last modification timestamp is by far the most important.
There are a number of reasons for this:

* To be pedantic, usually the assembler creates the object files, not the compiler.
† A kludge is a programming short cut, usually a nasty, untidy one. The New Hacker’s Dictionary goes
to a lot of detail to explain the term, including why it should be spelt kluge and not kludge.

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 43

• make relies on the last modification timestamp to decide what it needs to compile. If you
move the contents of a directory with cp, it changes all the modification timestamps to
the time when the copy was performed. If you then type make, you will perform a sig-
nificant amount of needless compilation.

• It’s frequently important to establish if two files are in fact the same, in other words, if
they hav e identical content. In the next section we’ll see some programmatic tools that
help us with this, but as a first approximation we can assume that two files with the same
name, length and modification timestamp have an identical content, too. The modifica-
tion timestamp is the most important of these three: you can change the name, but if
length and timestamp are the same, there’s still a good chance it’s the same file. If you
change the timestamp, you can’t rely on the two files being the same just because they
have the same name and length.

• As we hav e seen above, the last modification timestamp is useful for sorting when you
list directories. If you’re looking for a file you made the week before last, it helps if it is
dated accordingly.

Keeping timestamps straight

Unfortunately, it’s not as easy to keep timestamps straight. Here are some of the things that
can go wrong:

• If you copy the file somewhere else, traditional versions of cp always set the modification
timestamp to the time of copying. ln does not, and neither does mv if it doesn’t need to
make a physical copy, so either of these are preferable. In addition, more modern ver-
sions of cp offer the flag -p (preserve), which preserves the modification timestamp and
the permissions.

• When extracting an archive, cpio’s default behaviour is to set the modification timestamp
to the time of extraction. You can avoid this with the -m flag to cpio.

• Editing the file changes the modification timestamp. This seems obvious, but you fre-
quently find that you make a modification to a file to see if it solves a problem. If it
doesn’t help, you edit the modification out again, leaving the file exactly as it was, except
for the modification timestamp, which points to right now. A better strategy is to save
the backup file, if the editor keeps one, or otherwise to rename the original file before
making the modifications, then to rename it back again if you decide not to keep the
modifications.

• In a network, it’s unusual for times to be exactly the same. UNIX machines are not very
good at keeping the exact time, and some gain or lose as much as 5 minutes per day.
This can cause problems if you are using NFS. You edit your files on one machine,
where the clocks are behind, and compile on another, where the clocks are ahead. The
result can be that objects created before the last edit still have a modification timestamp
that is more recent, and make is fooled into believing that it doesn’t need to recompile.
Similar problems can occur when one system is running with an incorrect time zone set-
ting.

5 February 2005 02:09

44

cmp
A modification timestamp isn’t infallible, of course: even if EOF, timestamp and name are
identical, there still can be a lingering doubt as to whether the files really are identical. This
doubt becomes more pronounced if you seee something like:

$ ls -l
total 503
-rw-rw-rw- 1 grog wheel 1326 May 1 01:00 a29k-pinsn.c
-rw-rw-rw- 1 grog wheel 28871 May 1 01:00 a29k-tdep.c
-rw-rw-rw- 1 grog wheel 4259 May 1 01:00 a68v-nat.c
-rw-rw-rw- 1 grog wheel 4515 May 1 01:00 alpha-nat.c
-rw-rw-rw- 1 grog wheel 33690 May 1 01:00 alpha-tdep.c
... etc

It’s a fairly clear bet that somebody has done a touch on all the files, and their modification
timestamps have all been set to midnight on May 1.* The cmp program can give you certainty:

$ cmp foo.c ../orig/foo.c compare with the original
$ echo $? show exit status
0 0: all OK
$ cmp bar.c ../orig/bar.c
bar.c ../orig/bar.c differ: char 1293, line 39
$ echo $? show exit status
1 1: they differ

Remember you can tell the shell to display the exit status of the previous command with the
shell variable $?. In the C shell, the corresponding variable is called $status. If the con-
tents of the files are identical, cmp says nothing and returns an exit status 0. If they are, it tells
you where they differ and returns 1. You can use the exit status in a shell script. For example,
the following Bourne shell script (it doesn’t work with csh) compares files that are in both the
current tree (which is the current working directory) and the original tree (../orig) and makes a
copy of the ones that have changed in the directory ../changed.

$ for i in *; do check all files in the directory
> if [-f ../orig/$i]; then it is present in the orig tree
> cmp $i ../orig/$i 2>&1 >/dev/null compare them
> if [$? -ne 0]; then they’re different
> cp -p $i ../changed make a copy
> fi
> fi
> done

There are a couple of points to note about this example:

• We’re not interested in where the files differ, or in even seeing the message. We just
want to copy the files. As a result, we copy both stdout and stderr of cmp to /dev/null,
the UNIX bit bucket.

* Midnight? That looks like 1 a.m. But remember that UNIX timestamps are all in UTC, and that’s 1
a.m. in my time zone. This example really was done with touch.

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 45

• When copying, we use -p to ensure that the timestamps don’t get changed again.

An example — updating an existing tree
Chances are that before long you will have an old version of gcc on your system, but that you
will want to install a newer version. As we saw on page 29, the gzipped archive for gcc is
around 6 MB in size, whereas the patches run to 10 KB or 15 KB, so we opt to get diffs from
prep.ai.mit.edu to update version 2.6.1 to 2.6.3. That’s pretty straightforward if you have
enough disk space: we can duplicate the complete source tree and patch it. Before doing so,
we should check the disk space: the gcc source tree with all objects takes up 110 MB of disk
space.

$ cd /porting/srcmove to the parent directory
$ mkdir gcc-2.6.3 make a directory for the new tree
$ cd gcc-2.6.1 move to the old directory
$ tar cf - . | (cd ../gcc-2.6.3;tar xf -) and copy all files*

$ cd ../gcc-2.6.3 move to new directory
$ make clean and start off with a clean slate
$ gunzip < /C/incoming/gcc-2.6.1-2.6.2.tar.gz | patch -p | tee patch.log
Hmm... Looks like a new-style context diff to me...
The text leading up to this was:

|Changes for GCC version 2.6.2 from version 2.6.1:
|
|Before applying these diffs, go to the directory gcc-2.6.1. Remove all
|files that are not part of the distribution with the command
|
| make distclean
|
|Then use the command
|
| patch -p1
|
|feeding it the following diffs as input. Then rename the directory to
|gcc-2.6.2, re-run the configure script, and rebuild the compiler.
|
|diff -rc2P -x c-parse.y -x c-parse.c -x c-parse.h -x c-gperf.h -x cexp.c -x
bi-parser.c -x objc-parse.y -x objc-parse.c
|-x TAGS -x gcc.?? -x gcc.??s -x gcc.aux -x gcc.info* -x cpp.?? -x cpp.??s -x
cpp.aux -x cpp.info* -x cp/parse.c -x cp/pa
|rse.h gcc-2.6.1/ChangeLog gcc-2.6.2/ChangeLog
|*** gcc-2.6.1/ChangeLog Tue Nov 1 21:32:40 1994
--- gcc-2.6.2/ChangeLog Sat Nov 12 06:36:04 1994
File to patch:

Oops, these patches contain the directory name as well. As the diff header indicates, we can
solve this problem by supplying the -p1 flag to patch. We can also solve the problem by

* When moving directories with tar, it may not seem to be important whether you say tar c . or tar
c *--but it is. If you say *, you will miss out any file names starting with . (period).

5 February 2005 02:09

46

moving up one level in the directory hierarchy, since we have stuck to the same directory
names. This message also reminds us that patch is very verbose, so this time we enter:

$ gunzip < /C/incoming/gcc-2.6.1-2.6.2.tar.gz | patch -p1 -s | tee patch.log
1 out of 6 hunks failed--saving rejects to cccp.c.rej
$

What went wrong here? Let’s take a look at cccp.c.rej and cccp.c.orig. According to the
hunk, line 3281 should be

if (ip->macro != 0)

The hunk wants to change it to

if (output_marks)

However, line 3281 of cccp.orig is

if (output_marks)

In other words, we had already applied this change, probably from a message posted in
gnu.gcc.bugs. Although the patch failed, we don’t need to worry: all the patches had been
applied.

Now we hav e a gcc-2.6.2 source tree in our directory. To upgrade to 2.6.3, we need to apply
the next patch:

$ gunzip < /C/incoming/gcc-2.6.2-2.6.3.diff.gz | patch -p1 -s | tee -a patch.log

We use the -a option to patch here to keep both logs—possibly overkill in this case. This
time there are no errors.

After patching, there will be a lot of original files in the directory, along with the one .rej file.
We need to decide when to delete the .orig files: if something goes wrong compiling one of
the patched files, it’s nice to have the original around to compare. In our case, though, we
have a complete source tree of version 2.6.2 on the same disk, and it contains all the original
files, so we can remove the .orig files:

$ find . -name "*.orig" -print | xargs rm

We use xargs instead of -exec rm {} \; because it’s faster: -exec rm starts a rm process
for every file, whereas xargs will put as many file names onto the rm command line as possi-
ble. After cleaning up the tree, we back it up. It’s taken us a while to create the tree, and if
anything goes wrong, we’d like to be able to restore it to its initial condition as soon as possi-
ble.

5 February 2005 02:09

