
Compilers

The central tool in building software is the compiler. In UNIX, the compiler is really a collec-
tion of programs that compile sources written in the C language. In this chapter, we’ll con-
sider the following topics:

• The way the C language has evolved since its introduction and some of the problems that
this evolution has caused.

• C++, an evolution of C.

• The way the compiler is organized.

• How to use the individual parts of the compiler separately, in particular the assembler
and the linker.

We’ll defer how the assembler and the linker work until the next chapter—to understand
them, we first need to look at object files in more detail.

There are, of course, lots of other languages besides C, but on a UNIX platform C is the most
important. Even if you use another language, some of the information in this chapter will be
of use to you: many other languages output C source code.

The C language
The C language has evolved a lot since its appearance in the early 70’s. It started life as a
Real Man’s language, cryptic, small, tolerant of obscenities almost to the point of encouraging
them, but now it has passed through countless committees and has put on weight and become
somewhat sedate, pedantic and much less tolerant. Along with this, of course, it has devel-
oped a whole lot of idiosyncracies that plague the life of the portable software writer. First,
let’s take a look at the flavours that are commonly available.

337

5 February 2005 02:09

338

Kernighan and Ritchie
Kernighan and Ritchie or K&R is the name given to the dialect of C described in the first edi-
tion of The C programming language by Brian Kernighan and Dennie Ritchie. This was the
first book to describe the C language, and has become something of a bible. In 1988, a second
edition appeared, which describes an early version of ANSI C, not K&R C.

The K&R dialect is now completely obsolete, though many older versions of UNIX C resem-
ble it. Compared to ANSI C (also called Standard C), it lacks a number of features, and has a
few incompatibilities. In particular, strings were always allocated separately for each
instance, and so could be modified if desired. For example, you could encounter code like
this:

complain (msg)
char *msg;
{
char *message = "Nothing to complain about\n";
if (msg) /* parameter supplied? */
strcpy (message, msg); /* yes, save in message */

puts (message); /* say what we have to say */
}

When the parameter msg is non-NULL, it is copied into the string message. If you call this
function with a NULL message, it will display the last message again. For example:

complain (NULL); prints Nothing to complain about
complain ("Bad style"); prints Bad style
complain (NULL); prints Bad style

This may fail with modern C compilers: The ANSI Standard says that string constants are not
writable, but real-world compilers differ in the way they handle this situation.

UNIX C
A period of over ten years elapsed between the publication of K&R and the final adoption of
the ANSI C standard. During this time, the language didn’t stand still, but there was no effec-
tive standards document beyond K&R. The resultant evolution in the UNIX environment is
based on the Portable C Compiler first described in the paper Portability of C Programs and
the UNIX System published by S. C. Johnson and Dennis Ritchie in 1978, and is frequently
referred to as “UNIX C”. This is not a standard, or even a series of standards—it’s better to
consider it a set of marginally compatible extensions to K&R C. You can find more informa-
tion in The evolution of C—Past and Future by L. Rosler, but you can’t rely on the degree to
which your particular compiler (or the one for which your software package was written)
agrees with that description. From a present-day standpoint, it’s enough to know that these
extensions exist, and otherwise treat the compilers like K&R. In case of doubt, the documen-
tation that comes with the compiler is about the only even remotely reliable help. Here’s a
brief summary of the sort of things that had changed by the time The evolution of C—Past
and Future appeared:

5 February 2005 02:09

Chapter 20: Compilers 339

• Optional function prototyping similar to that of ANSI C was introduced. One difference
exists: if a function accepts a variable number of parameters, UNIX C uses the form

int printf (char *format,);

whereas ANSI C uses the form

int printf (char *format, ...);

•

• The enum type specifies a way to define classes of constants. For example, traditionally I
could write:

#define RED 0
#define GREEN 1
#define BLUE 2

int colour;
int x;
colour = BLUE;
x = RED;

With enums, I can write

enum colours {red, green, blue};
enum texture {rough, smooth, slimy};

enum colours colour;
enum texture x;
colour = blue;
x = red;

This syntax is intended to make error checking easier. As you can see in the second
example, there seems to be something wrong with the assignment to x, which was not
evident in the K&R example. The compiler can see it too, and should complain,
although many modern compilers compile the second program without any comment. In
addition, the symbols are visible to the compiler. This means that the debugger can use
them as well: preprocessor macros never make it to the code generation pass of the com-
piler, so the debugger doesn’t know about them. The keyword const was added to spec-
ify that a variable may not be changed in the course of program execution.

• The preprocessor directive #elif was added.

• The preprocessor pseudofunction defined (identifier) was added.

• The data type void was added.

5 February 2005 02:09

340

ANSI C
In 1989, the C programming language was finally standardized by the American National
Standards Institute (ANSI) as standard X3.159-1989. In the following year it was adopted by
the International Standards organization (ISO) as standard ISO/IEC 9899:1990. There are
minor textual differences in the two standards, but the language defined is the same in each.
The existence of two standards is good for a certain amount of confusion: some people call it
ANSI C, some call it Standard C, and I suppose you could call it ISO C, though I haven’t
heard that name. I call it ANSI C because the name is more specific: the word “Standard”
doesn’t make it obvious which standard is implied.

The following discussion is intended to show the differences between ANSI C and older ver-
sions. It’s not intended to teach you ANSI C—see Practical C Programming, by Steve
Oualline, and the POSIX Programmer’s Guide by Donald A. Lewine for that information.

ANSI C introduced a large number of changes, many of them designed to help the compiler
detect program errors. You can find a reasonably complete list in Appendix C of K&R. Here
are the most important from the standpoint of porting software:

• A number of changes have been made in the preprocessor. We’ll look at these on page
342.

• The keywords void, signed and const were adopted from the Portable C compiler.

• The keyword volatile was added to tell an optimizer not to assume that the value of
the variable will stay the same from one reference to another. Variables normally stay
unchanged unless you execute an explicit assignment statement or call a function, and
most optimizers rely on this behaviour. This assumption may not hold true if a signal
interrupts the normal course of execution, or if you are sharing the memory with another
process. If the value of a variable might change without your influence, you should
declare the variable volatile so that the optimizer can handle it correctly. We saw an
example of this kind of problem in Chapter 13, Signals, page 200.

• You can state the type of numeric constants explicitly: for example, you can write a long
constant 0 as 0L, and a double 0 would be 0D.

• Implicit string literal concatenation is allowed — the following two lines are completely
equivalent:

"first string" "second string"
"first stringsecond string"

K&R C allows only the second form.

• void pointers are allowed. Previous versions of C allowed the type void, but not point-
ers to objects of that type. You use a void pointer to indicate the the object you are
pointing to is of indeterminate type. Before you can use the data, you need to cast it to a
specific data type.

• In strict ANSI C, you must declare or define functions before you call them. You use a
function declaration to tell the compiler that the function exists, what parameters it takes,

5 February 2005 02:09

Chapter 20: Compilers 341

and what value (if any) it returns. A function definition is the code for the function, and
includes the declaration.

Strict ANSI C function definitions and declarations include function protyping, which
specifies the nature of each parameter, though most implementations allow old-style defi-
nitions. Consider the following function definition in K&R C:

foobar (a, b, c, d)
char *c;
struct baz *a;
{
body
}

This definition does not specify the return type of the function; it may or may not return
int. The types of two of the parameters are specified, the others default to int. The
parameter type specifiers are not in the order of the declaration. In ANSI C, this would
become:

void foobar (struct baz *a, int b, char *c, int d)
{
body
}

This definition states all types explicitly, so we can see that foobar does not, in fact,
return any value.

• The same syntax can also be used to declare the function, though you can also abbreviate
it to:

void foobar (struct baz *, int, char, int);

This helps catch one of the most insidious program bugs: consider the following code,
which is perfectly legal K&R:

extern foobar ();/* define foobar without parameters */
int a, b; /* two integers */
struct baz *c; /* and a struct baz */

foobar (a, b, c);/* call foobar (int, int, struct baz *) */

In this example, I have supplied the parameters to foobar in the wrong sequence: the
struct baz pointer is the first parameter, not the third. In all likelihood, foobar will
try to modify the struct baz, and will use the value of a—possibly a small inte-
ger — to do this. If I call foobar without parameters, the compiler won’t notice, but by
the time I get my almost inevitable segmentation violation, foobar will probably have
overwritten the stack and removed all evidence of how the problem occurred.

5 February 2005 02:09

342

Differences in the ANSI C preprocessor
At first sight, the C preprocessor doesn’t seem to have changed between K&R C and ANSI C.
This is intentional: for the casual user, everything is the same. When you scratch the surface,
however, you discover a number of differences. The following list reflects the logical
sequence in which the preprocessor processes its input.

• A method called trigraphs represents characters not found in the native character set of
some European countries. The following character sequences are considered identical:

Table 20−1: ANSI C trigraphs

character trigraph

??=
[??(
\ ??/
] ??)
ˆ ??’
{ ??<
| ??!
} ??>
˜ ??-

To show what this means, let’s look at a possibly barely recognizable program:

??=include <unistd.h>
main ()
??<
printf ("Hello, world??/n");
??>

Not surprisingly, most programmers hate the things. To quote the gcc manual: “You
don’t want to know about this brain-damage”. Many C compilers, including the GNU C
compiler, giv e you the opportunity to turn off support for trigraphs, since they can bite
you when you’re not expecting them.

• Any line may end with \, indicating that it should be spliced—in other words, the pre-
processor removes the \ character and the following newline character and joins the line
to the following line. K&R C performed line splicing only during the definition of pre-
processor macros. This can be dangerous: trailing blanks can nullify the meaning of the \
character, and it’s easy to oversee one when deleting lines that follow it.

• Unlike UNIX C, formal macro parameters in strings are not replaced by the actual
parameters. In order to be able to create a string that includes an actual parameter, the
operator # was introduced. A formal parameter preceded by a # is replaced by the actual
parameter surrounded by string quotes. Thus

5 February 2005 02:09

Chapter 20: Compilers 343

#define foo(x) open (#x)
foo (/usr/lib/libc.a);

will be replaced by

open ("/usr/lib/libc.a");

In many traditional versions of C, you could have got the same effect from:

#define foo(x) open ("x")
foo (/usr/lib/libc.a);

• In K&R C, problems frequently arose concatenating two parameters. Since both param-
eter names are valid identifiers, you can’t just write one after the other, because that
would create a new valid identifer, and nothing would be substituted. For example, con-
sider the X11 macro Concat, which joins two names together to create a complete path
name from a directory and a file name:

Concat(dir, file);

I obviously can’t just write

#define Concat(dir, file) dirfile

because that will always just give me the text dirfile, which isn’t much use. The solu-
tion that the X Consortium used for K&R C was:

#define Concat(dir,file)dir/**/file

This relies on the fact that most C compilers derived from the portable C compiler sim-
ply remove comments and replace them by nothing. This works most of the time, but
there is no basis for it in the standard, and some compilers replace the sequence /**/
with a blank, which breaks the mechanism. ANSI C introduced the operator ## to
address this problem. ## removes itself and any white space (blanks or tab characters) to
either side. For ANSI C, Imake.tmpl defines Concat as

#define Concat(dir,file)dir##file

• The #include directive now allows the use of preprocessor directives as an argument.
imake uses this to #include the <vendor>.cf file.

• Conditional compilation now includes the #elif directive, which significantly simplifies
nested conditional compilation. In addition, a number of logical operators are available:
|| and && have the same meaning as in C, and the operator defined checks whether its
operand is defined. This allows code like:

#if defined BSD || defined SVR4 || defined ULTRIX
foo
#elif defined SVR3
bar
#endif

If you want, you can surround the operand of defined with parentheses, but you don’t
need to.

5 February 2005 02:09

344

• The use of the preprocessor directive #line, which had existed in previous versions of
C, was formalized. #line supports preprocessors that output C code—see page 88 for
an example. #line tells the compiler to reset the internal line number and file name
used for error reporting purposes to the specified values. For example if the file bar.c
contains just

#line 264 "foo.c"
slipup!

the compiler would report the error like this:

$ gcc -O bar.c -o bar
foo.c:264: parse error before ‘!’
gnumake: *** [bar] Error 1

Although the error was really detected on line 2 of bar.c, the compiler reports the error as
if it had occurred on line 264 of foo.c.

• The line slipup! suggests that it is there to draw attention to an error. This is a fairly
common technique, though it’s obviously just a kludge, especially as the error message
requires you to look at the source to figure out what the problem is. ANSI C introduced
another directive to do the Right Thing. Instead of slipup!, I can enter:

#error Have not finished writing this thing yet

This produces (from gcc)

$ make bar
gcc -O bar.c -o bar
foo.c:270: #error Have not finished writing this thing yet
gnumake: *** [bar] Error 1

I couldn’t write Haven’t, because that causes gcc to look for a matching apostrophe (’).
Since there isn’t one, it would die with a less obvious message, whether or not an error
really occurred.

• To quote the Standard:

A preprocessor line of the form # pragma token-sequence
opt

causes the processor to perform
an implementation-dependent action. An unrecognized pragma is ignored.

This is not a Good Thing. Implementation-dependent actions are the enemy of portable soft-
ware, and about the only redeeming fact is that the compiler ignores an unrecognized pragma.
Since almost nobody uses this feature, you can hope that your compiler will, indeed, ignore
any pragmas it finds.

Assertions
Assertions provide an alternative form of preprocessor conditional expression. They are spec-
ified in the form

5 February 2005 02:09

Chapter 20: Compilers 345

#assert question (answer)

In the terminology of the documentation, this asserts (states) that the answer to question is
answer. You can test it with the construct:

#if #question(answer)
...
#endif

The code between #if and #endif will be compiled if the answer to question is answer.
An alternative way to use this facility is in combination with the compiler directive -Aques-
tion(answer). This method is intended for internal use by the compiler: typically, it tells
the compiler the software and platform on which it is running. For example, compiling bar.c
on UNIXWare 1.0 with gcc and the -v flag reveals:

/usr/local/lib/gcc-lib/i386-univel-sysv4.2/2.4.5/cpp \
-lang-c -v -undef -D__GNUC__=2 -Di386 -Dunix -D__svr4__ \
-D__i386__ -D__unix__ -D__svr4__ -D__i386 -D__unix \
-D__svr4__ -Asystem(unix) -Acpu(i386) -Amachine(i386) \
bar.c /usr/tmp/cca000Nl.i

The -A flags passed by gcc to the preprocessor specify that this is a unix system and that the
cpu and machine are both i386. It would be nice if this information stated that the operating
system was svr4, but unfortunately this is not the default for System V.4. gcc has also retro-
fitted it to System V.3, where the assertion is -Asystem(svr3), which makes more sense,
and to BSD systems, where the assertion is -Asystem(bsd).

C++
C++ is an object-oriented evolution of C that started in the early 80’s, long before the ANSI C
standard evolved. It is almost completely upwardly compatible with ANSI C, to a large extent
because ANSI C borrowed heavily from C++, so we don’t run much danger by considering it
the next evolutionary step beyond ANSI C.

The last thing I want to do here is explain the differences between ANSI C and C++: The
Annotated C++ Reference Manual, by Margaret A. Ellis and Bjarne Stroustrup, spends
nearly 450 very carefully written pages defining the language and drawing attention to its
peculiarities. From our point of view, there is not too much to say about C++.

One of the more popular C++ translators is AT&T’s cfront, which, as the name suggests, is a
front-end preprocessor that generates C program code as its output. Although this does not
make the generated code any worse, it does make debugging much more difficult.

Since C++ is almost completely upwards compatible from ANSI C, a C++ compiler can usu-
ally compile ANSI C. This assumes well-formed ANSI C programs: most ANSI C compilers
accept a number of anachronisms either with or without warnings — for example, K&R-style
function definitions. The same anachronisms are no longer part of the C++ language, and
cause the compilation to fail.

C++ is so much bigger than C that it is not practicable to even think about converting a C++
program to C. Unless there are some really pressing reasons, it’s a whole lot easier to get hold

5 February 2005 02:09

346

of the current version of the GNU C compiler, which can compile both C and C++ (and
Objective C, if you’re interested).

C and C++ have different function linking conventions. Since ev ery C++ program calls C
library functions, there is potential for errors if you use the wrong calling convention. We
looked at this aspect in Chapter 17, Header files, on page 286.

Other C dialects
Before the advent of ANSI C, the language was ported to a number of non-UNIX architec-
tures. Some of these added incompatible extensions. Many added incompatible library calls.
One area is of particular interest: the Microsoft C compiler, which was originally written for
MS-DOS. It was subsequently adapted to run under XENIX and SCO UNIX System V.
Since our emphasis is on UNIX and UNIX-like systems, we’ll talk about the XENIX com-
piler, though the considerations also apply to SCO UNIX and MS-DOS.

The most obvious difference between the XENIX C compiler and most UNIX compilers is in
the flags, which are described in Appendix B, Compiler flags, but a couple of architectural
limitations have caused incompatibilities in the language. We’ll look at them in the following
section.

Intel 8086 memory models
The original MS-DOS compiler ran on the Intel 8086 architecture. This architecture has 1
MB of real memory, but the addresses are only 16 bits long. In order to address memory, each
machine instruction implicitly adds the contents one of four segment registers to the address,
so at any one time the machine can address a total of 256 kB of memory. In order to address
more memory, the C implementation defines a 32 bit pointer type, the so-called far address, in
software. Accessing memory via a far pointer requires reloading a segment register before the
access, and is thus significantly slower than access via a 16-bit near address. This has a num-
ber of consequences:

Near addresses are simply offsets within a segment: if the program expects it to point to a dif-
ferent segment, it will access the wrong data.

Far pointers are 32 bits wide, containing the contents of the segment register in one half and
the offset within the segment in the other half. The segment register contains bits 4 through
19 of a 20-bit address, and the offset contains bits 0 through 15. To create an absolute address
from a far pointer, the hardware performs effectively

struct fp
{
short segment_reg; /* 16 bits, bits 4 through 19 of address */
short offset; /* 16 bits, bits 0 through 15 of address */
}

long abs_address = (fp.segment_reg << 4) + fp.offset;

As a result, many possible far pointer contents that could resolve to the same address. This
complicates pointer comparison significantly. Some implementations solved this problem by
declaring huge pointers, which are normalized 20-bit addresses in 32-bit words.

5 February 2005 02:09

Chapter 20: Compilers 347

Along with three pointer types, MS-DOS C uses a number of different executable formats.
Each of them has default pointer sizes associated with them. You choose your model by sup-
plying the appropriate flag to the compiler, and you can override the default pointer sizes with
the explicit use of the keywords near, far or (where available) huge:

• The tiny model occupies a single segment and thus can always use near addresses. Apart
from the obvious compactness of the code, this model has the advantage that it can be
converted to a .COM file.

• The small model occupies a single data segment and a single code segment. Here, too,
you can always use near pointers, but you need to be sure you’re pointing into the correct
segment.

• The medium model (sometimes called middle model) has multiple code segments and a
single data segment. As a result, code pointers are far and data pointers are near.

• The compact model is the inverse of the medium model. Here, code is restricted to one
segment, and data can have multiple segemnts. Static data is restricted to a single seg-
ment. As a result, code pointers are near and data pointers are far.

• The large model can have multiple code and multiple data segments. Static data is
restricted to a single segment. All pointers are far.

• The huge model is like the large model except that it can have multiple static data seg-
ments. The name is unfortunate, since it suggests some connection with huge pointers.
In fact, the huge model uses far pointers.

What does this mean to you? If you’re porting from MS-DOS to UNIX, you may run into
these keywords near, far and huge. This isn’t a big deal: you just need to remove them, or
better still, define them as an empty string. You may also find a lot of pointer checking code,
which will probably get quite confused in a UNIX environment. If you do find this kind of
code, the best thing to do is to ifdef it out (#ifndef unix).

If you’re converting from UNIX to MS-DOS, things can be a lot more complicated. You’ll be
better off using a 32-bit compiler, which doesn’t need this kind of kludge. Otherwise you
may have to spend a considerable amount of time figuring out the memory architecture most
suitable for your package.

Other differences in MS-DOS
MS-DOS compilers grew up in a very different environment from UNIX. As a result, a num-
ber of detail differences exist. None of them are very serious, but it’s good to be forewarned:

• They do not adhere to the traditional UNIX organization of preprocessor, compiler,
assembler and loader.

• They don’t use the assembler directly, though they can usually output assembler code for
use outside the compilation environment.

5 February 2005 02:09

348

• The assembler code output by MS-DOS compilers is in the standard Intel mnemonics,
which are not compatible with UNIX assemblers.

• Many MS-DOS compilers combine the preprocessor and the main compiler pass, which
makes for faster compilation and less disk I/O.

• Many rely on the Microsoft linker, which was not originally written for C, and which has
significant limitations.

• Many MS-DOS compilers still run in real mode, which limits them to 640K code and
data. This is a severe limitation, and it is not uncommon to have to modify programs in
order to prevent the compiler from dying of amnesia. This leads to a different approach
with header files, in particular: in UNIX, it’s common to declare everything just in case,
whereas in MS-DOS it may be a better idea to not declare anything unless absolutely
necessary.

Compiler organization
The traditional UNIX compiler is derived from the Portable C Compiler and divides the com-
pilation into four steps, traditionally called phases or passes, controlled by the compiler con-
trol program cc. Most more modern compilers also adhere to this structure:

1. The preprocessor, called cpp, reads in the the source files and handles the preprocessor
directives (those starting with #) and performs macro substitution.

2. The compiler itself, usually called cc1, reads in the preprocessor output and compiles to
assembler source code. In SunOS, this pass is called ccom.

3. The assembler as reads in this output and assembles it, producing an object file.

4. The loader takes the object file or files and links them together to form an executable. To
do so, it also loads a low-level initialization file, normally called crt0.o, and searches a
number or libraries.

cc usually performs these passes invisibly. The intermediate outputs are stored in temporary
files or pipes from one pass to the next. It is possible, however, to call the passes directly or to
tell cc which pass to execute — we’ll look at how to do that in the next section. By conven-
tion, a number of suffixes are used to describe the intermediate files. For example, the GNU

5 February 2005 02:09

Chapter 20: Compilers 349

C compiler recognizes the following suffixes for a program foo:

Table 20−2: C compiler intermediate files

file contents created by
compiler?

foo.c unpreprocessed C source code
foo.cc unpreprocessed C++ source code
foo.cxx unpreprocessed C++ source code
foo.C unpreprocessed C++ source code
foo.i preprocessed C source code yes
foo.ii preprocessed C++ source code yes
foo.m Objective C source code
foo.h C header file
foo.s assembler source code yes
foo.S assembler code requiring preprocessing
foo.o object file yes

Here’s what you need to do to go through the compilation of foo.c to the executable foo, one
pass at a time:

$ gcc -E foo.c -o foo.i preprocess
$ gcc -S foo.i compile
$ gcc -c foo.s assemble
$ gcc foo.o -o foo link

There are slight variations in the form of the commands: if you don’t tell the preprocessor
where to put the output file, gcc writes it to stdout. Other preprocessors may put a special suf-
fix on the base file name, or if you specify the -o flag, the compiler might put it in the file you
specify. If you don’t tell the linker where to put the output file, it writes to a.out.

Compiling an object file from an assembler file is the same as compiling from a source file or
a preprocessed file—gcc decides what to do based on the suffix of the input file.

You can also run any combination of contiguous passes like this:

$ gcc -S foo.c preprocess and compile
$ gcc -c foo.c preprocess, compile and assemble
$ gcc -o foo foo.c preprocess, compile, assemble, link
$ gcc -c foo.i compile and assemble
$ gcc -o foo foo.i compile, assemble, link
$ gcc -o foo foo.s assemble and link

The location of the C compiler is, unfortunately, anything but standardized. The control pro-
gram cc is normally in /usr/bin, or occasionally in /bin, but the other components might be
stored in any of the following: /usr/lib, /usr/ccs/lib (System V.4), /usr/lib/cmplrs/cc (MIPS) or
/usr/local/lib/gcc-lib (gcc on most systems).

5 February 2005 02:09

350

Other compiler organizations
Some modern compilers have additional passes. Some optimizers fit between the compiler
and the assembler: they take the output of the compiler and output optimized code to the
assembler. An extreme example is the MIPS compiler, which has a total of 8 passes: The pre-
processor cpp, the front end cc1, the ucode* linker uld, the procedure merge pass umerge, the
global optimizer uopt, the code generator ugen, the assembler as1, and the linker ld. Despite
this apparent complexity, you can consider this compiler as if it had only the traditional four
passes: the five passes from the front end up to the code generator perform the same function
as the traditional cc1.

The C preprocessor
You can use the preprocessor cpp for other purposes than preprocessing C source code: it is a
reasonably good macro processor, and it has the advantage that its functionality is available on
ev ery system with a C compiler, though in some cases it is available only via the C compiler.
It is one of the mainstays of imake, and occasionally packages use it for other purposes as
well.

There are two ways to invoke cpp: you can invoke it with cc and the -E flag, or you can start it
directly. If at all possible, you should start it via cc rather than running it directly. On some
systems you can’t rely on cc to pass the correct flags to cpp. You also can’t rely on all ver-
sions of cpp to use the same flags—you can’t even rely on them to be documented. You can
find a list comparing the more common preprocessor flags in Appendix B, Compiler flags,
page .

Which compiler to use
Most systems still supply a C compiler, and normally this is the one you would use. In some
cases, bugs in the native system compiler, compatibility problems, or just the fact that you
don’t hav e the normal compiler may lead to your using a different compiler. This situation is
becoming more common as software manufacturers unbundle their compilers.

Using a different compiler is not necessarily a Bad Thing, and can frequently be an
improvement. In particular, gcc, the GNU C compiler from the Free Software Foundation, is
very popular—it’s the standard C compiler for a number of systems, including OSF/1,
4.4BSD, and Linux. It can do just about everything except run in minimal memory, and it has
the advantage of being a well-used compiler: chances are that somebody has compiled your
package with gcc before, so you are less likely to run into trouble with gcc than with the
native compiler of a less-known system. In addition, gcc is capable of highly optimized code,
in many cases significantly better than the code created by the native compiler.

Compilers are becoming more standardized, and so are the bugs you are liable to run into. If
you have the choice between compiling for K&R or ANSI, choose ANSI: the K&R flags may

* ucode is a kind of intermediate code used by the compiler. It is visible to the user, and you have the
option of building and using ucode libraries.

5 February 2005 02:09

Chapter 20: Compilers 351

use “features” that were not universally implemented, whereas the ANSI versions tend to pay
more attention to the standard. If you do run into a bug, chances are someone has seen it
before and has taken steps to work around it. In addition, compiling for ANSI usually means
that the prototypes are declared in ANSI fashion, which increases the chance of subtle type
conflicts being caught.

Some things that neither you nor the Makefile may expect are:

• gcc compiles both K&R (-traditional) and ANSI dialects. However, even some soft-
ware supplied by the Free Software Foundation breaks when compiled with gcc unless
the -traditional flag is used.

• Many compilers do not compile correctly when both optimization and debugging infor-
mation are specified (-O and -g flags), though most of them recognize the fact and turn
off one of the flags. Even if the compiler ostensibly supports both flags together, bugs
may prevent it from working well. For example, gcc version 2.3.3 generated invalid
assembler output for System V.4 C++ programs if both flags were specified. Even when
compilers do create debugging information from an optimizing compilation, the results
can be confusing due to the action of the optimizer:

− The optimizer may remove variables. As a result, you may not be able to set or dis-
play their values.

− The optimizer may rearrange program flow. This means that single-stepping might
not do what you expect, and you may not be able to set breakpoints on certain lines
because the code there has been eliminated.

− Some optimizers remove stack frames,* which makes for faster code, particularly
for small functions. gcc will do this with the -O3 option.

Stack frame removal in particular makes debugging almost impossible. These aren’t
bugs, they’re features. If they cause problems for you, you will need to recompile with-
out optimization.

• Some compilers limit the length of identifiers. This can cause the compiler to treat two
different identifiers as the same thing. The best thing to do if you run into this problem is
to change the compiler: modern compilers don’t hav e such limits, and a compiler that
does is liable to have more tricks in store for you.

• With a System V compiler, you might find:

$ cc -c frotzel.c -o frotzel.o
cc: Error: -o would overwrite frotzel.o

System V compilers use the flag -o only to specify the name of the final executable,
which must not coincide with the name of the object file. In many Makefiles from the
BSD world, on the other hand, this is the standard default rule for compiling from .c to
.o.

* See Chapter 21, Object files and friends, page 377, for further information on stack frames.

5 February 2005 02:09

352

• All C compilers expect at least some of their flags in a particular sequence. The docu-
mentation is frequently hazy about which operands are sequence-sensitive, or what inter-
actions there are between specific operands.

The last problem bears some more discussion. A well-documented example is that the linker
searchs library specifications (the -l option) in the sequence in which they are specified on
the compiler invocation line—we’ll investigate that in more detail in Chapter 21, Object files
and friends, page 373. Here’s an example of another operand sequence problem:

$ cc foo.c -I../myheaders

If foo.c refers to a file bar.h in the directory ../myheaders, some compilers won’t find the
header because they don’t interpret the -I directive until after they try to compile foo.c. The
man page for System V.4 cc does state that the compiler searches directories specified with -I
in the order in which they occur, but it does not relate this to the sequence of operands and file
names.

5 February 2005 02:09

