
7
Documentation

Ask any real guru a question, so the saying goes, and he will reply with a cryptic “RTFM”.*

Cynics claim this is even the answer to the question “Where can I find the manual?” All too
often, programmers consider documentation a necessary (or even unnecessary) evil, and if it
gets done at all, it’s usually the last thing that gets done. This is particularly evident when you
look at the quality of documentation supplied with some free software packages (though many
free packages, such as most of those from the Free Software Foundation, are very well docu-
mented). The quality and kind of the documentation in source packages varies wildly. In
Chapter 2, Unpacking the goodies, page 25, we looked at the documentation that should be
automatically supplied with the package to describe what it is and how to install it. In this
chapter, we’ll look at documentation that is intended for use after you have installed the pack-
age.

The documentation you get with a package is usually in one of the following formats:

• man pages, the traditional on-line documentation for UNIX, which are formatted with
nroff.

• info files, used with the GNU project’s info on-line documentation reader.

• Unformatted roff, TEX, or texinfo hardcopy documentation.

• Preformatted documentation in PostScript or .dvi format, or occasionally in other formats
such as HP LaserJet.

We know where we want to get to—the formatted documentation—but we don’t always
know where to start, so it’s easier to look at documentation in reverse order: first, we’ll look at
the end result, then at the formatters, and finally at the input files.

Preformatted documentation
Occasionally you get documentation that has been formatted so that you can print it on just
about any printer, but this doesn’t happen very much: in order to achieve this, the text must be
free of any frills and formatted so that any typewriter can print it. Nearly any printer

* “Read The Manual”—the F is usually silent.

91

5 February 2005 02:09

92

nowadays is capable of better results, so preformatted files are usually supplied in a format
that can print high quality printout on a laser printer. The following three are about the only
ones you will come across:

• PostScript is a specialized programming language for printers, and the printed data are in
fact embedded in the program. This makes it an extremely flexible format.

• .dvi is the format that is output by TEX. In order to print it, you need a TEX driver.

• Unlike PostScript and .dvi, the Hewlett-Packard LaserJet format is not portable: you
need a LaserJet-compatible printer to print it. The LaserJet format is obsolescent: even
many LaserJet printers made today also support PostScript, and there are programmatic
ways to print PostScript on other laser printers, so there is little motivation for using the
much more restrictive LaserJet format.

PostScript
PostScript is the current format of choice. Because it is a programming language, it is much
more flexible than conventional data formats. For example, it is easily scalable. You can take
a file intended for a phototypesetter with a resolution of 2540 bpi and print it on a laser
printer, and it will come out correctly.* In addition, better quality printers perform the format-
ting themselves, resulting in a considerable load reduction for the computer. A large number
of printers and all modern phototypesetters can process PostScript directly.

If your printer doesn’t handle PostScript, you can use programs like ghostscript, which inter-
pret PostScript programs and output in a multitude of other formats, including LaserJet, so
ev en if you have a LaserJet, it can be a better idea to use PostScript format. ghostscript is dis-
tributed by the Free Software Foundation — see Appendix E, Where to get sources.
ghostscript can also display PostScript files on X displays.

Most PostScript files are encoded in plain ASCII without any control characters except new-
line (though that doesn’t make them easy to read). Even when you include special characters
in your text, they appear in the PostScript document as plain ASCII sequences. It’s usually
pretty easy to recognize PostScript, even without the file program. Here’s the start of a draft
version of this chapter:

%!PS-Adobe-3.0
%%Creator: groff version 1.09
%%CreationDate: Thu Aug 18 17:34:24 1994
%%DocumentNeededResources: font Times-Bold

The data itself is embedded in parentheses between the commands. Looking at a draft of this
text, we see things like

(It’)79.8 273.6 Q 2.613(su)-.55 G .113
(sually pretty easy to recognize a PostScript program, e)-2.613 F -.15
(ve)-.25 G 2.614(nw).15 G .114(ithout the)-2.614 F F2(\214le)2.614 E F1
(program--here’)79.8 285.6 Q 2.5(st)-.55 G(he start of a draft v)-2.5 E

* You may have to wait a while before a few meg abytes of font information are transferred and pro-
cessed, but eventually you get your document.

5 February 2005 02:09

Chapter 7: Documentation 93

Problems with PostScript

PostScript doesn’t pose too many problems, but occasionally you might see one of these:

Missing fonts
PostScript documents include information about the fonts they require. Many fonts are
built in to printers and PostScript display software, but if the fonts are not present, the
system chooses a default value which may have little in common with the font which
the document requested. The default font is typically Courier, which is fixed-width,
and the results look terrible. If this happens, you can find the list of required fonts with
the following:

$ grep ’%%.* font ’ mumble.ps
%%DocumentNeededResources: font Garamond-BookItalic
%%+ font Times-Roman
%%+ font Garamond-Light
%%+ font Garamond-LightItalic
%%+ font Courier
%%+ font Garamond-Book
%%+ font Courier-Bold
%%IncludeResource: font Garamond-BookItalic
%%IncludeResource: font Times-Roman
%%IncludeResource: font Garamond-Light
%%IncludeResource: font Garamond-LightItalic
%%IncludeResource: font Courier
%%IncludeResource: font Garamond-Book
%%IncludeResource: font Courier-Bold
(%%DocumentNeededResources: font Times-Bold)131.711 327.378 S F1 1.281

This extracts the font requests from the PostScript file: in this case, the document
requires Times Roman, Courier and Garamond fonts. Just about every printer and soft-
ware package supplies Times Roman and Courier, but Garamond (the font in which this
book is written) is less common. In addition, most fonts are copyrighted, so you proba-
bly won’t be able to find them on the net. If you have a document like this in PostScript
format, your choices are:

• Reformat it with a different font if you have the source.

• Get the Garamond fonts.

• Edit the file and change the name of the font to a font with similar metrics (in other
words, with similar size characters). The results won’t be as good, but if the font
you find is similar enough, they might be acceptable. For example, you might
change the text Garamond to Times Roman.

Wrong font type
Most PostScript fonts are in plain ASCII. You may also come across Type 2 PostScript
and display PostScript, both of which include binary data. Many printers can’t under-
stand the binary format, and they may react to it in an unfriendly way. For example, my
National KX-P 4455 printer just hangs if I copy display PostScript to it. See the section
format conversion below for ways to solve this dilemma.

5 February 2005 02:09

94

.dvi format
One of the goals of TEX was to be able to create output for just about any printer. As we will
see, old versions of troff, the main competitor, were able to produce output only for a very
limited number of phototypesetters. Even if you have one of them in your office, it’s unlikely
that you will want to use it for printing out a draft of a 30-page paper.

The TEX solution, which was later adopted by troff in ditroff (device independent troff), was to
output the formatted data in a device-independent format, .dvi, and leave it to another pro-
gram, a so-called driver, to format the files in a format appropriate to the output device.
Unlike PostScript, .dvi contains large numbers of control characters and characters with the
sign bit set, and is not even remotely legible. Most versions of file know about .dvi format.

Format conversion
Not so long ago your choice of documentation software determined your output format. For
example, if you used TEX, you would get .dvi output, and you would need a TEX driver to print
it. Nowadays, it’s becoming easier to handle file formats. GNU troff will output in .dvi for-
mat if you wish, and programs are available to convert from .dvi to PostScript and back again.
Here’s a list of conversions you might like to perform — see Appendix E, Where to get sources
for how to get software to perform them.

• A number of programs convert from .dvi to PostScript—for example, dvips.

• There’s no good reason to want to convert from PostScript to .dvi, so there are no pro-
grams available. .dvi is not much use in itself—it needs to be tranformed to a final
printer form, and if you have PostScript output, you can do that directly with ghostscript
(see below) without going via .dvi.

• To display .dvi files on an X display, use SeeTeX.

• To convert from .dvi to a printer output format, use one of the dvi2xxx programs.

• To convert from PostScript to a printer format, use ghostscript.

• To display PostScript on an X display, you can also use ghostscript, but ghostview gives
you a better interface.

• To convert PostScript with binary data into ASCII, use t1ascii.

roff and friends
The original UNIX formatting program was called roff (for run-off). It is now completely
obsolete, but it has a number of descendents:

• nroff is a comparatively simple formatter designed to produce output for plain ASCII dis-
plays and printers.

• troff is a more sophisticated formatter designed to produce output for phototypesetters.
Many versions create output only for the obsolete APS-5 phototypesetter, and you need

5 February 2005 02:09

Chapter 7: Documentation 95

postprocessing software to convert this output to something that modern typesetters or
laser printers understand. Fortunately, versions of troff that produce PostScript output are
now available.

• ditroff (device independent troff) is a newer version of troff that produces output in a
device-independent intermediate form that can then be converted into the final form by a
conversion program. This moves the problem of correct output format from troff to the
conversion program. Despite the terminology, this device-independent format is not the
same as .dvi format.

• groff is the GNU project troff and nroff replacement. In troff mode it can produce output
in PostScript and .dvi format.

All versions of roff share the same source file syntax, though nroff is more restricted in its
functionality than troff. If you have a usable version of troff, you can use it to produce prop-
erly formatted hardcopy versions of the man pages, for example. This is also what xman (the
X11 manual browser) does.

formatting with nroff or troff
troff input bears a certain resemblance to the traces left behind when a fly falls into an inkwell
and then walks across a desk. The first time you run troff against a file intended for troff, the
results may be less than heartening. For example, consider the following passage from the
documentation of the Revision Control System RCS. When correctly formatted, the output is:

Besides the operations ci and co, RCS provides the following commands:

ident extract identification markers
rcs change RCS file attributes
rcsclean remove unchanged working files (optional)
rcsdiff compare revisions
rcsfreeze record a configuration (optional)
rcsmerge merge revisions
rlog read log messages and other information in RCS files

A synopsis of these commands appears in the Appendix.

2.1 Automatic Identification

RCS can stamp source and object code with special identification strings, similar to product
and serial numbers. To obtain such identification, place the marker

Id

into the text of a revision, for instance inside a comment. The check-out operation will replace
this marker with a string of the form

$Id: filename revisionnumber date time author state locker $

To format it, you can try

$ troff rcs.ms >rcs.ps

This assumes the use of groff or another flavour of troff that creates PostScript output (thus the

5 February 2005 02:09

96

name rcs.ps for the output file). If you do this, you get an output that looks like:

Besides the operations ci and co, RCS provides the following commands: tab(%); li l.
ident%extract identification markers rcs%change RCS file attributes rcsclean%remove
unchanged working files (optional) rcsdiff%compare revisions rcsfreeze%record a configura-
tion (optional) rcsmerge%merge revisions rlog%read log messages and other information in
RCS files A synopsis of these commands appears in the Appendix. Automatic Identification
RCS can stamp source and object code with special identification strings, similar to product
and serial numbers. To obtain such identification, place the marker Id into the text of a revi-
sion, for instance inside a comment. The check-out operation will replace this marker with a
string of the form Id: filename revisionnumber date time author state locker

Most of the text seems to be there, but it hasn’t been formatted at all (well, it has been right
justified). What happened?

Almost every troff or roff input document uses some set of macros. You can define your own
macros in the source, of course, but over time a number of standard macro packages have
ev olved. They are stored in a directory called tmac. In the days of no confusion, this was
/usr/lib/tmac, but nowadays it might equally well be /usr/share/tmac (for systems close to the
System V.4 ABI—see Chapter 4, Package configuration, page 48, for more details) or
/usr/local/groff/tmac for GNU roff. The name is known to troff either by environment vari-
ables or by instinct (the path name is compiled into the program). troff loads specific macros
if you specify the name of the file as an argument to the -m flag. For example, to specify the
man page macros /usr/lib/tmac/an, you would supply troff with the parameter -man. man
makes more sense than an, so these macros are called the man macros. The names of other
macro packages also usually grow an m at the beginning. Some systems change the base
name of the macros from, say, /usr/lib/tmac/an to /usr/lib/tmac/tmac.an.

Most versions of troff supply the following macro packages:

• The man (tmac/an) and mandoc (tmac/andoc) packages are used to format man pages.

• The mdoc (tmac/doc) package is used to format hardcopy documents, including some
man pages.

• The mm (tmac/m) macros, the so-called memorandum macros, are described in the docu-
mentation as macros to “format letters, reports, memoranda, papers, manuals and books”.
It doesn’t describe what you shouldn’t use them for.

• The ms (tmac/s) macros were the original macros supplied with the Seventh Edition.
They are now claimed to be obsolescent, but you will see them again and again. This
book was formatted with a modified version of the ms macros.

• The me (tmac/e) macros are another, more recent set of macros which originated in
Berkeley.

There is no sure-fire way to tell which macros a file needs. Here are a couple of possibilities:

• The file name suffix might give a hint. For example, our file is called rcs.ms, so there is a
very good chance that it wants to be formatted with -ms.

5 February 2005 02:09

Chapter 7: Documentation 97

• The program grog, which is part of groff, examines the source and guesses the kind of
macro set. It is frequently wrong.

• The only other way is trial and error. There aren’t that many different macro sets, so this
might be a good solution.

In this case, our file name suggests that it should be formatted with the ms macros. Let’s try
that:

$ troff rcs.ms >rcs.ps

Now we get:

Besides the operations ci and co, RCS provides the following commands:
tab(%); li l. ident%extract identification markers rcs%change RCS file attributes
rcsclean%remove unchanged working files (optional) rcsdiff%compare revisions rcs-
freeze%record a configuration (optional) rcsmerge%merge revisions rlog%read log messages
and other information in RCS files A synopsis of these commands appears in the Appendix.

2.1 Automatic Identification

RCS can stamp source and object code with special identification strings, similar to product
and serial numbers. To obtain such identification, place the marker

Id

into the text of a revision, for instance inside a comment. The check-out operation will replace
this marker with a string of the form

$Id: filename revisionnumber date time author state locker $

Well, it doesn’t look quite as bad, but it’s still not where we want to be. What happened to
that list of program names?

troff does not do all the work by itself. The tabular layout of the program names in this exam-
ple is done by the preprocessor tbl, which handles tables. Before we let troff at the document,
we need to pass it through tbl, which replaces the code

.TS
tab(%);
li l.
ident%extract identification markers
rcs%change RCS file attributes
rcsclean%remove unchanged working files (optional)
rcsdiff%compare revisions
rcsfreeze%record a configuration (optional)
rcsmerge%merge revisions
rlog%read log messages and other information in RCS files
.TE

with a couple of hundred lines of complicated and illegible troff instructions to build the table.
To get the desired results, we need to enter:

$ tbl rcs.ms | troff -ms >rcs.ps

nroff, troff and groff use a number of preprocessors to perform special functions. They are:

5 February 2005 02:09

98

• soelim replaces .so statements (which correspond to C #include statements) with the con-
tents of the file to which the line refers. The roff programs do this too, of course, but the
other preprocessors don’t, so if the contents of one of the files is of interest to another
preprocessor, you need to run soelim first.

• refer processes references.

• pic draws simple pictures.

• tbl formats data in tabular form.

• eqn formats equations.

Unless you know that the document you’re formatting doesn’t use any of these preprocessors,
or formatting takes a very long time, it’s easier to use them all. There are two possible ways
to do this:

• You can pipe from one processor to the next. This is the standard way:

$ soelim rcs.ms | refer | pic | tbl | eqn | troff -ms

The soelim preprocessor reads in the document, and replaces any .so commands by the
contents of the file to which they refer. It then passes the output to refer, which pro-
cesses any textual references and passes it to pic, which processes any pictures it may
find, and passes the result to tbl. tbl processes any tables and passes its result to eqn,
which processes any equations before passing the result to troff.

• Some versions of troff invoke the preprocessors themselves if passed appropriate flags.
For example, with groff:

Table 7−1: Starting preprocessors from groff

Flag Processor

-e eqn
-t tbl
-p pic
-s soelim
-R refer

Starting the preprocessors from troff not only has the advantage of involving less typing—it
also ensures that the preprocessors are started in the correct sequence. Problems can arise if
you run eqn before tbl, for example, when there are equations within tables. See Typesetting
tables with tbl by Henry McGilton and Mary McNabb for further details.

Other roff-related programs
As you can see, the troff system uses a large number of programs. Once they were relatively
small, and this was the UNIX way. Now they are large, but there are still a lot of them. Apart
from the programs we have already seen, you could encounter the GNU variants, which can

5 February 2005 02:09

Chapter 7: Documentation 99

optionally be installed with a name beginning in g—for example, GNU eqn may be installed
as geqn if the system already has a different version of eqn. indxbib and lookbib (sometimes
called lkbib) process bibliographic references, and are available in the groff package if you
don’t hav e them. groff also includes a number of other programs, such as grops, and grotty,
which you don’t normally need to invoke directly.

Man pages
Almost from the beginning, UNIX had an on-line manual, traditionally called man pages.
You can peruse man pages with the man program, or you can print them out as hardcopy doc-
umentation.

Traditionally, man pages are cryptic and formalized: they were introduced at a time when disk
storage was expensive, so they are short, and they were intended as a reference for people who
already understand the product. More and more, unfortunately, they are taking on the respon-
sibility of being the sole source of documentation. They don’t perform this task very well.

man history
The UNIX man facility has had a long and varying history, and knowing it helps understand
some of the strangenesses. The Seventh Edition of the Unix Programmer’s Manual was
divided into nine sections. Section 9, which contained the quick reference cards, has since
atrophied. Traditionally, you refer to man pages by the name of the item to which they refer,
followed by the section number in parentheses, so the man page for the C compiler would be
called cc(1). BSD systems have substantially retained the Seventh Edition structure, but Sys-
tem V has reorganized them. There are also differences of opinion about where individual
man pages belong, so Table 7-2 can only be a guide:

Table 7−2: UNIX manual sections

Seventh Contents System V
Edition Section
Section

1 Commands (programs) 1

2 System Calls (direct kernel interface) 2

3 Subroutines (library functions in user space) 3

4 Special files 7, 4

5 File Formats and Conventions 4, 5

6 Games 6

7 Macro Packages and Language Conventions 7

8 Maintenance 1m

9 Quick Reference cards

What distinguished the UNIX manual from that of other systems was that it was designed to

5 February 2005 02:09

100

be kept online. Each of these sections, except for the quick reference cards, was stored in
nroff format in a directory called /usr/man/man<section>, where <section> was the section
number. Each entry was (and is) called a man page, although nowadays some can run on for
100 pages or more.

The manual was stored in nroff format in order to be independent of the display hardware, and
because formatting the whole manual took such a long time. For these reasons it was chosen
to format pages on an individual basis when they were accessed, which made access to the
manual slower and thus less attractive to use.

The speed problem was solved by saving the formatted copy of the man page in a second
directory hierarchy, /usr/man/cat<section>, the first time that the page was formatted. Subse-
quent accesses would then find the formatted page and display that more quickly.

This basic hierarchy has survived more or less intact to the present day. People have, of
course, thought of ways to confuse it:

• As the manual got larger, it seemed reasonable to subdivide it further. Most users
weren’t interested in system administration functions, so some systems put them into a
separate directory, such as /usr/man/cat1m, or gav e them a filename suffix such as m, so
that the manual page for shutdown might end up being called /usr/man/cat1/shut-
down.1m or /usr/man/man1m/shutdown.1m or something similar.

• Various commercial implementations reorganized the sequence of the sections in the
printed manual, and reorganized the directories to coincide. For example, in System V
the description of the file /etc/group is in section 4, but in the Seventh Edition and BSD it
is in section 5.

• Even without the uncertainty of which section to search for a command, it was evident
that section numbers were not very informative. Some implementations, such as XENIX
and some versions of System V, chose to replace the uninformative numbers with unin-
formative letters. For example, ls(1) becomes ls(C) in XENIX.

• Some man programs have lost the ability to format the man pages, so you need to format
them before installation. You’ll find this problem on systems where nroff is an add-on
component.

• There is no longer a single directory where you can expect to put man pages: some Sys-
tem V versions put formatted man pages for users in a directory /usr/catman/u_man, and
man pages for programmers in /usr/catman/p_man. Since most programmers are users,
and the distinction between the use of the man pages is not always as clear as you would
like, this means that man has to search two separate directory hierarchies for the man
pages.

• As we saw in Chapter 4, Package configuration, page 48, System V.4 puts its man pages
in /usr/share/man. Many System V.4 systems require formatted man pages, and some,
such as UnixWare, don’t provide a man program at all.

• Many man programs accept compressed input, either formatted or non-formatted. For
some reason, the pack program still survives here, but other versions of man also under-
stand man pages compressed with compress or gzip. We looked at all of these programs

5 February 2005 02:09

Chapter 7: Documentation 101

in Chapter 2, Unpacking the goodies, page 20.

• Different man programs place different interpretations on the suffix of the man page file-
name. They seldom document the meanings of the suffix.

• To keep up the tradition of incompatible man pages, BSD has changed the default macro
set from man to mdoc. This means that older man page readers can’t make any sense of
unformatted BSD man pages.

This combination of affairs makes life difficult. For example, on my system I have a number
of different man pages in different directories. The file names for the man pages for printf,
which is both a command and a library function, are:

BSD printf command, formatted:
/usr/share/man/cat1/printf.0

Solaris printf command, nroff:
/pub/man/solaris-2.2/man1/printf.1

SVR4.2 printf command, formatted, compressed:
/pub/man/svr4.2/cat1/printf.1.Z

BSD printf function, formatted:
/usr/share/man/cat3/printf.0

Solaris 2.2 printf function, nroff, standard:
/pub/man/solaris-2.2/man3/printf.3s

Solaris 2.2 printf function, nroff, BSD version:
/pub/man/solaris-2.2/man3/printf.3b

SunOS 4.1.3 printf function, nroff:
/pub/man/sunos-4.1.3/man3/printf.3v

SVR3 printf function, formatted, packed:
/pub/man/catman/p_man/man3/printf.3s.z

SVR4.2 printf function, formatted, compressed:
/pub/man/svr4.2/cat3/printf.3s.Z

SVR4.2 printf function, formatted, compressed, BSD version:
/pub/man/svr4.2/cat3/printf.3b.Z

XENIX printf function, nroff, packed:
/pub/man/xenix-2.3.2/man.S/printf.S.z

Most packages assume that unformatted man pages will be installed in /usr/man. They usu-
ally accept that the path may be different, and some allow you to change the subdirectory and
the file name suffix, but this is as far as they normally go.

This lack of standardization can cause such problems that many people just give up and don’t
bother to install the man pages. This is a pity—instead, why not install a man program that
isn’t as fussy? A number of alternatives are available, including one for System V.4 from
Walnut Creek and a number on various Linux distributions.

TeX
TEX is Donald Knuth’s monument to the triumph of logic over convention. To quote Knuth’s
The TEX book,

Insiders pronounce the χ of TEX as a Greek chi, not as an ’x’, so that TEX rhymes with the word
blecchhh. It’s the ’ch’ sound in Scottish words like loch or German words like ach; it’s a

5 February 2005 02:09

102

Spanish ’j’ and a Russian ’kh’. When you say it correctly to your computer, the terminal may
become slightly moist.

This is one of the more informative parts of The TEX book. It is, unfortunately, not a manual
but a textbook, and most of the essential parts are hidden in exercises flagged “very difficult”.
If you just want to figure out how to format a TEX document, Making TEX work, by Norman
Walsh, is a much better option.

If troff input looks like a fly having left an inkwell, TEX input resembles more the attempts of a
drunken spider. Here’s part of the file plain.tex which defines some of the things that any TEX
macro package should be able to do:

\def\cases#1{\left\{\,\vcenter{\normalbaselines\m@th
\ialign{$##\hfil$&\quad##\hfil\crcr#1\crcr}}\right.}

\def\matrix#1{\null\,\vcenter{\normalbaselines\m@th
\ialign{\hfil$##$\hfil&&\quad\hfil$##$\hfil\crcr
\mathstrut\crcr\noalign{\kern-\baselineskip}
#1\crcr\mathstrut\crcr\noalign{\kern-\baselineskip}}}\,}

More than anywhere else in porting, it is good for your state of mind to steer clear of TEX
internals. The assumptions on which the syntax is based differ markedly from those of other
programming languages. For example, identifiers may not contain digits, and spaces are
required only when the meaning would otherwise be ambiguous (to TEX, not to you), so the
sequence fontsize300 is in fact the identifier fontsize followed by the number 300. On
the other hand, it is almost impossible to find any good solid information in the documenta-
tion, so you could spend hours trying to solve a minor problem. I hav e been using TEX fre-
quently for years, and I still find it the most frustrating program I have ever seen.*

Along with TEX, there are a couple of macro packages that have become so important that they
are almost text processors in their own right:

• LATEX is a macro package that is not quite as painful as plain TEX, but also not as power-
ful. It is normally built as a separate program when installing TEX, using a technique of
dumping a running program to an object file that we will examine in Chapter 21, Object
files and friends, page 376.

• BIBTEX is an auxiliary program which, in conjuntion with LATEX, creates bibliographic
references. Read all about it in Making TEX work. It usually takes three runs through the
source files to create the correct auxiliary files and format the document correctly.

• texinfo is a GNU package that supplies both online and hardcopy documentation. It uses
TEX to format the hardcopy documentation. We’ll look at it along with GNU info in the
next section.

* When I wrote this sentence, I wondered if I wasn’t overstating the case. Mike Loukides, the author of
Programming with GNU Software, reviewed the final draft and added a single word: Amen.

5 February 2005 02:09

Chapter 7: Documentation 103

GNU Info and Texinfo
It’s unlikely that you’ll break out in storms of enthusiasm about the documentation techniques
we’ve looked at so far. The GNU project didn’t, either, when they started, though their con-
cerns were somewhat different:

• Man pages are straightforward, but the man program is relatively primitive. In particular,
man does not provide a way to follow up on references in the man page.

• Man pages are intended to be stored on-line and thus tend to be cryptic. This makes
them unsuited as hardcopy documentation. Making them longer and more detailed
makes them less suited for online documentation.

• There is almost no link between man pages and hardcopy documentation, unless they
happen to be the same thing for a particular package.

• Maintaining man pages and hardcopy documentation is double the work and opens you
to the danger of omissions in one or the other document.

As in other areas, the GNU project started from scratch and came up with a third solution,
info. This is a combined system of online and hardcopy documentation. Both forms of docu-
mentation are contained in the source file: you use makeinfo program to create info docu-
ments, which you read with the on-line browser info, and you use TEX and the texinfo macro
set are used to format the documentation for printing.

info is a menu-driven, tree-structured online browser. You can follow in-text references and
then return to the original text. info is available both as a stand-alone program and as an
emacs macro.

If you have a package that supplies documentation in info format, you should use it. Even if
some GNU programs, such as gcc and emacs, hav e both info and man pages, the info is much
more detailled.

Running texinfo is straightforward: run TEX. The document reads in the file texinfo.tex, and
about the only problem you are likely to encounter is if it doesn’t find this file.

The World-Wide Web
The World-Wide Web (WWW) is not primarily a program documentation system, but it has a
number of properties which make it suitable as a manual browser: as a result of the prolifera-
tion of the Internet, it is well known and generally available, it supplies a transparent cross-
reference system, and the user interface is easier to understand. It’s likely that it will gain
importance in the years to come. Hopefully it will do this without causing as much confusion
as its predecessors.

5 February 2005 02:09

