
Header files

When the C language was young, header files were required to define structures and occasion-
ally to specify that a function did something out of the ordinary like taking a double parame-
ter or returning a float result. Then ANSI C and POSIX came along and changed all that.

Header files seem a relatively simple idea, but in fact they can be a major source of annoyance
in porting. In particular:

• ANSI and POSIX.1 have added a certain structure to the usage of header files, but there
are still many old-fashioned headers out there.

• ANSI and POSIX.1 have also placed more stringent requirements on data types used in
header files. This can cause conflicts with older systems, especially if the author has
commited the sin of trying to out-guess the header files.

• C++ has special requirements of header files. If your header files don’t fulfil these
requirements, the GNU protoize program can usually fix them.

• There is still no complete agreement on the names of header files, or in which directories
they should be placed. In particular, System V.3 and System V.4 frequently disagree as
to whether a header file should be in /usr/include or in /usr/include/sys.

ANSI C, POSIX.1, and header files
ANSI C and POSIX.1 have had a far-reaching effect on the structure of system header files.
We’ll look at the changes in the C language in more detail in Chapter 20, Compilers. The fol-
lowing points are relevant to the use of header files:

• ANSI C prefers to have an ANSI-style prototype for every function call it encounters. If
it doesn’t find one, it can’t check the function call semantics as thoroughly, and it may
issue a warning. It’s a good idea to enable all such warnings, but this kind of message
makes it difficult to recognize the real errors hiding behind the warnings. In C++, the
rules are even stricter: if you don’t hav e a prototype, it’s an error and your source file
doesn’t compile.

283

5 February 2005 02:09

284

• To do a complete job of error checking, ANSI C requires the prototype in the new,
embedded form:

int foo (char *zot, int glarp);

and not

int foo (zot, glarp);
char *zot;

Old C compilers don’t understand this new kind of prototype.

• Header files usually contain many definitions that are not part of POSIX.1. A mecha-
nism is needed to disable these definitions if you are compiling a program intended to be
POSIX.1 compatible.*

The result of these requirements is spaghetti header files: you frequently see things like this
excerpt from the header file stdio.h in 4.4BSD:

/*
* Functions defined in ANSI C standard.
*/
__BEGIN_DECLS
void clearerr __P((FILE *));
int fclose __P((FILE *));

#if !defined(_ANSI_SOURCE) && !defined(_POSIX_SOURCE)
extern int sys_nerr; /* perror(3) external variables */
extern __const char *__const sys_errlist[];
#endif
void perror __P((const char *));

__END_DECLS

/*
* Functions defined in POSIX 1003.1.
*/
#ifndef _ANSI_SOURCE
#define L_cuserid 9 /* size for cuserid(); UT_NAMESIZE + 1 */
#define L_ctermid 1024 /* size for ctermid(); PATH_MAX */

__BEGIN_DECLS
char *ctermid __P((char *));

__END_DECLS
#endif /* not ANSI */

/*
* Routines that are purely local.
*/

* Writing your programs to conform to POSIX.1 may be a good idea if you want them to run on as
many platforms as possible. On the other hand, it may also be a bad idea: POSIX.1 has very rudimen-
tary facilities in some areas. You may find it more confining than is good for your program.

5 February 2005 02:09

Chapter 17: Header files 285

#if !defined (_ANSI_SOURCE) && !defined(_POSIX_SOURCE)
__BEGIN_DECLS
char *fgetln __P((FILE *, size_t *));

__END_DECLS

Well, it does look vaguely like C, but this kind of header file scares most people off. A num-
ber of conflicts have led to this kind of code:

• The ANSI C library and POSIX.1 carefully define a subset of the total available func-
tionality. If you want to abide strictly to the standards, any extension must be flagged as
an error, even if it would work.

• The C++ language has a different syntax from C, but both languages share a common set
of header files.

These solutions have caused new problems, which we’ll examine in this chapter.

ANSI and POSIX.1 restrictions
Most current UNIX implementations do not conform completely with POSIX.1 and ANSI C,
and every implementation offers a number of features that are not part of either standard. A
program that conforms with the standards must not use these features. You can specify that
you wish your program to be compliant with the standards by defining the preprocessor vari-
ables _ANSI_SOURCE or _POSIX_SOURCE, which maximizes the portability of the code. It
does this by preventing the inclusion of certain definitions. In our example, the array
sys_errlist, (see Chapter 18, Function libraries, page 298), is not part of POSIX.1 or
ANSI, so the definition is not included if either preprocessor variable is set. If we refer to
sys_errlist anyway, the compiler signifies an error, since the array hasn’t been declared.
Similarly, L_cuserid is defined in POSIX.1 but not in ANSI C, so it is defined only when
_POSIX_SOURCE is defined and _ANSI_SOURCE is not defined.

Declarations for C++
C++ has additional requirements of symbol naming: function overloading allows different
functions to have the same name. Assemblers don’t think this is funny at all, and neither do
linkers, so the names need to be changed to be unique. In addition, the names need to some-
how reflect the class to which they belong, the kind of parameters that the function takes and
the kind of value it returns. This is done by a technique called function name encoding, usu-
ally called function name mangling. The parameter and return value type information is
appended to the function name according to a predetermined rule. To illustrate this, let’s look
at a simple function declaration:

double Internal::sense (int a, unsigned char *text, Internal &p, ...);

• First, two underscores are appended to the name of the function. With the initial under-
score we get for the assembler, the name is now _sense__.

5 February 2005 02:09

286

• Then the class name, Internal is added. Since the length of the name needs to be spec-
ified, this is put in first: _sense__8Internal.

• Next, the parameters are encoded. Simple types like int and char are abbreviated to a
single character (in this case, i and c. If they hav e modifiers like unsigned, these, too,
are encoded and precede the type information. In this case, we get just plain i for the int
parameter, and PUc (a Pointer to Unsigned characters for the second parameter:
_sense__8InternaliPUc.

• Class or structure references again can’t be coded ahead of time, so again the length of
the name and the name itself is used. In this case, we have a reference, so the letter R is
placed in front of the name: _sense__8InternaliPUcR8Internal.

• Finally, the ellipses are specified with the letter e: _sense__8InternaliPUcR8Inter-
nale.

For more details on function name mangling, see The Annotated C++ Reference Manual by
Margaret Ellis and Bjarne Stroustrup.

This difference in naming is a problem when a C++ program really needs to call a function
written in C. The name in the object file is not mangled, and so the C++ compiler must not
output a reference to a mangled name. Theoretically, there could be other differences between
C++ calls and C calls that the compiler also needs to take into account. You can’t just assume
that a function written in another language adheres to the same conventions, so you have to
tell it when a called function is written according to C conventions rather than according to
C++ conventions.

This is done with the following elegant construct:

extern "C"
{
char *ctermid (char *);
};

In ANSI C, the same declaration would be

char *ctermid (char *);

and in K&R C it would be

char *ctermid ();

It would be a pain to have a separate set of header files for each version. Instead, the imple-
mentors defined preprocessor variables which evaluate to language constructs for certain
places:

• __BEGIN_DECLS is defined as extern “C” { for C++ and nothing otherwise.

• __END_DECLS is defined as }; for C++ and nothing otherwise.

• __P(foo) is defined as foo for C++ and ANSI C, and nothing otherwise. This is the
reason why the arguments to __P() are enclosed in double parentheses: the outside level
of parentheses gets stripped by the preprocessor.

5 February 2005 02:09

Chapter 17: Header files 287

In this implementation, sys/cdefs.h defines these preprocessor variables. What happens if
sys/cdefs.h isn’t included before stdio.h? Lots of error messages. So one of the first lines in
stdio.h is #include <sys/cdefs.h>. This is not the only place that sys/cdefs.h is included:
in this particular implementation, from 4.4BSD, it is included from assert.h, db.h, dirent.h,
err.h, fnmatch.h, fstab.h, fts.h, glob.h, grp.h, kvm.h, locale.h, math.h, netdb.h, nlist.h, pwd.h,
regex.h, regexp.h, resolv.h, runetype.h, setjmp.h, signal.h, stdio.h, stdlib.h, string.h, time.h,
ttyent.h, unistd.h, utime.h and vis.h. This places an additional load on the compiler, which
reads in a 100 line definition file multiple times. It also creates the possibility for compiler
errors. sys/cdefs.h defines a preprocessor variable _CDEFS_H_ in order to avoid this problem:
after the obligatory UCB copyright notice, it starts with

#ifndef _CDEFS_H_
#define _CDEFS_H_

#if defined(__cplusplus)
#define __BEGIN_DECLS extern "C" {
#define __END_DECLS };
#else
#define __BEGIN_DECLS
#define __END_DECLS
#endif

This is a common technique introduced by ANSI C: the preprocessor only processes the body
of the header file the first time. After that, the preprocessor variable _CDEFS_H_ is defined,
and the body will not be processed again.

There are a couple of things to note about this method:

• There are no hard and fast rules about the naming and definition of these auxiliary vari-
ables. The result is that not all header files use this technique. For example, in FreeBSD
1.1, the header file machine/limits.h defines a preprocessor variable _MACHINE_LIM-
ITS_H and only interprets the body of the file if this preprocessor variable was not set on
entry. BSD/OS 1.1, on the other hand, does not. The same header file is present, and the
text is almost identical, but there is nothing to stop you from including and interpreting
machine/limits.h multiple times. The result can be that a package that compiles just fine
under FreeBSD may fail to compile under BSD/OS.

• The ANSI standard defines numerous standard preprocessor variables to ensure that
header files are interpreted only the first time they are included. The variables all start
with a leading _, and the second character is either another _ or an upper-case letter. It’s
a good idea to avoid using such symbols in your sources.

• We could save including sys/cdefs.h multiple times by checking _CDEFS_H_ before
including it. Unfortunately, this would establish an undesireable relationship between
the two files: if for some reason it becomes necessary to change the name of the pre-
processor variable, or perhaps to give it different semantics (like giving it different values
at different times, instead of just being defined), you have to go through all the header
files that refer to the preprocessor variable and modify them.

5 February 2005 02:09

288

ANSI header files
The ANSI C language definition, also called Standard C, was the first to attempt some kind of
standardization of header files. As far as it goes, it works well, but unfortunately it covers
only a comparatively small number of header files. In ANSI C,

• The only header files you should need to include are assert.h, ctype.h, errno.h, float.h,
limits.h, locale.h, math.h, setjmp.h, signal.h, stdarg.h, stddef.h, stdio.h, stdlib.h, string.h
and time.h.

• You may include headers in any order.

• You may include any header more than once.

• Header files do not depend on other header files.

• Header files do not include other header files.

If you can get by with just the ANSI header files, you won’t hav e much trouble. Unfortu-
nately, real-life programs usually require headers that aren’t covered by the ANSI standard.

Type information
A large number of system and library calls return information which can be represented in a
single machine word. The machine word of the PDP-11, on which the Seventh Edition ran,
was only 16 bits wide, and in some cases you had to squeeze the value to get it in the word.
For example, the Seventh Edition file system represented an inode number in an int, so each
file system could have only 65536 inodes. When 32-bit machines were introduced, people
quickly took the opportunity to extend the length of these fields, and modern file systems such
as ufs or vxfs have 32 bit inode numbers.

These changes were an advantage, but they bore a danger with them: nowadays, you can’t be
sure how long an inode number is. Current systems really do have different sized fields for
inode numbers, and this presents a portability problem. Inodes aren’t the only thing that has
changed: consider the following structure definition, which contains information returned by
system calls:

struct process_info
{
long pid; /* process number */
long start_time; /* time process was started, from time () */
long owner; /* user ID of owner */
long log_file; /* file number of log file */
long log_file_pos; /* current position in log file */
short file_permissions; /* default umask */
short log_file_major; /* major device number for log file */
short log_file_minor; /* minor device number */
short inode; /* inode number of log file */
}

On most modern systems, the longs take up 32 bits and the shorts take up 16 bits. Because

5 February 2005 02:09

Chapter 17: Header files 289

of alignment constraints, we put the longest data types at the front and the shortest at the end
(see Chapter 11, Hardware dependencies, page 158 for more details). And for older systems,
these fields are perfectly adequate. But what happens if we port a program containing this
structure to a 64 bit machine running System V.4 and vxfs? We’ve already seen that the inode
numbers are now 32 bits long, and System V.4 major and minor device numbers also take up
more space. If you port this package to 4.4BSD, the field log_file_pos needs to be 64 bits
long.

Clearly, it’s an oversimplification to assume that any particular kind of value maps to a short
or a long. The correct way to do this is to define a type that describes the value. In modern
C, the structure above becomes:

struct process_info
{
pid_t pid; /* process number */
time_t start_time; /* time process was started, from time () */
uid_t owner; /* user ID of owner */
long log_file; /* file number of log file */
pos_t log_file_pos; /* current position in log file */
mode_t file_permissions; /* default umask */
short log_file_major; /* major device number for log file */
short log_file_minor; /* minor device number */
inode_t inode; /* inode number of log file */
}

It’s important to remember that these type definitions are all in the mind of the compiler, and
that they are defined in a header file, which is usually called sys/types.h: the system handles
them as integers of appropriate length. If you define them in this manner, you give the com-
piler an opportunity to catch mistakes and generate more reliable code. Check your man
pages for the types of the arguments on your system if you run into trouble. In addition, Ap-
pendix A, Comparative reference to UNIX data types, contains an overview of the more com-
mon types used in UNIX systems.

Classes of header files
If you look at the directory hierarchy /usr/include, you may be astounded by the sheer number
of header files, over 400 of them on a typical UNIX system. Fortunately, many of them are in
subdirectories, and you usually won’t hav e to worry about them, except for one subdirectory:
/usr/include/sys.

/usr/include/sys
In early versions of UNIX, this directory contained the header files used for compiling the
kernel. Nowadays, this directory is intended to contain header files that relate to the UNIX
implementation, though the usage varies considerably. You will frequently find files that
directly include files from /usr/include/sys. In fact, it may come as a surprise that this is not
supposed to be necessary. Often you will also see code like

5 February 2005 02:09

290

#ifdef USG /* System V */
#include <sys/err.h>
#else /* non-System V system */
#include <err.h>
#endif

This simplified example shows what you need to do because System V keeps the header file
err.h in /usr/include/sys, whereas other flavours keep it in /usr/include. In order to include the
file correctly, the source code needs to know what kind of system it is running on. If it
guesses wrong (for example, if USG is not defined when it should be) or if the author of the
package didn’t allow for System V, either out of ignorance, or because the package has never
been compiled on System V before, then the compilation will fail with a message about miss-
ing header files.

Frequently, the decisions made by the kind of code in the last example are incorrect. Some
header files in System V have changed between System V.3 and System V.4. If, for example,
you port a program written for System V.4 to System V.3, you may find things like

#include <wait.h>

This will fail in most versions of System V.3, because there is no header file
/usr/include/wait.h; the file is called /usr/include/sys/wait.h. There are a couple of things you
could do here:

• You could start the compiler with a supplementary -I/usr/include/sys, which will
cause it to search /usr/include/sys for files specified without any pathname component.
The problem with this approach is that you need to do it for every package that runs into
this problem.

• You could consider doing what System V.4 does in many cases: create a file called
/usr/include/wait.h that contains just an obligatory copyright notice and an #include
directive enclosed in #ifdefs:

/* THIS IS PUBLISHED NON-PROPRIETARY SOURCE CODE OF O’REILLY */
/* AND ASSOCIATES Inc. */
/* The copyright notice above does not evidence any actual or */
/* intended restriction on the use of this code. */
#ifndef _WAIT_H
#define _WAIT_H
#include <sys/wait.h>
#endif

Problems with header files
It’s fair to say that no system is supplied with completely correct system header files. Your
system header files will probably suffer from at least one of the following problems:

• “Incorrect” naming. The header files contain the definitions you need, but they are not in
the place you would expect.

• Incomplete definitions. Function prototypes or definitions of structures and constants are
missing.

5 February 2005 02:09

Chapter 17: Header files 291

• Incompatible definitions. The definitions are there, but they don’t match your compiler.
This is particularly often the case with C++ on systems that don’t hav e a native C++
compiler. The gcc utility program protoize, which is run when installing gcc, is sup-
posed to take care of these differences, and it may be of use even if you choose not to
install gcc.

• Incorrect #ifdefs. For example, the file may define certain functions only if
_POSIX_SOURCE is defined, even though _POSIX_SOURCE is intended to restrict func-
tionality, not to enable it. The System V.4.2 version math.h surrounds M_PI (the constant
pi) with

#if (__STDC__ && !defined(_POSIX_SOURCE)) || defined(_XOPEN_SOURCE)

In other words, if you include math.h without defining __STDC__ (ANSI C) or
_XOPEN_SOURCE (X Open compliant), M_PI will not be defined.

• The header files may contain syntax errors that the native compiler does not notice, but
which cause other compilers to refuse them. For example, some versions of XENIX
curses.h contain the lines:

#ifdef M_TERMCAP
include <tcap.h> /* Use: cc -DM_TERMCAP ... -lcurses -ltermlib */
#else
ifdef M_TERMINFO
include <tinfo.h> /* Use: cc -DM_TERMINFO ... -ltinfo [-lx] */
else

ERROR -- Either "M_TERMCAP" or "M_TERMINFO" must be #define’d.
endif
#endif

This does not cause problems for the XENIX C compiler, but gcc, for one, complains
about the unterminated character constant starting with define’d.

• The header files may be “missing”. In the course of time, header files have come and
gone, and the definitions have been moved to other places. In particular, the definitions
that used to be in strings.h have been moved to string.h (and changed somewhat on the
way), and termio.h has become termios.h (see Chapter 15, Terminal drivers, page 241 for
more details).

The solutions to these problems are many and varied. They usually leave you feeling dissatis-
fied:

• Fix the system header files. This sounds like heresy, but if you have established beyond
any reasonable doubt that the header file is to blame, this is about all you can do, assum-
ing you can convince your system administrator that it is necessary. If you do choose
this way, be sure to consider whether fixing the header file will break some other pro-
gram that relies on the behaviour. In addition, you should report the bugs to your vendor
and remember to re-apply the updates when you install a newer version of the operating
system.

• Use the system header files, but add the missing definitions in local header files, or,
worse, in the individual source files. This is a particularly obnoxious “solution”,

5 February 2005 02:09

292

especially when, as so often, the declarations are not dependent on a particular ifdef. In
almost any system with reasonably complete header files there will be discrepancies
between the declarations in the system header files and the declarations in the package.
Even if they are only cosmetic, they will stop an ANSI compiler from compiling. For
example, your system header files may declare getpid to return pid_t, but the package
declares it to return int.

About the only legitimate use of this style of “fixing” is to declare functions that will
really cause incorrect compilation if you don’t declare them. Even then, declare them
only inside an ifdef for a specific operating system. In the case of getpid, you’re better
off not declaring it: the compiler will assume the correct return values. Nevertheless, you
will see this surprisingly often in packages that have already been ported to a number of
operating systems, and it’s one of the most common causes of porting problems.

• Make your own copies of the header files and use them instead. This is the worst idea of
all: if anything changes in your system’s header files, you will never find out about it. It
also means you can’t giv e your source tree to somebody else: in most systems, the header
files are subject to copyright.

5 February 2005 02:09

