Installation

Finally the package has been built and tested, and it works. Up to this point, everything in the
package has been in the private source tree where it has been built. Most packages are not
intended to be executed from the source directory: before we can use them, we need to move
the component parts to their intended directories. In particular:

We need to put executables where a normal PATH environment variable will find them.

We need to place on-line documentation in the correct directories in a form that the docu-
ment browser understands.

The installed software needs to be given the correct permissions to do what it has to do:
all executables need to have their execute permissions set, and some programs may need
setuid or setgid bits set (see Chapter 12, Kernel dependencies, page). In addition, soft-
ware will frequently be installed in directories to which normal users have no access. In
these cases, the install must be done by root.

Library routines and configuration files need to be installed where the package expects
them: the location could be compiled into the programs, or an environment variable
could point to the location.

If the package uses environment variables, you may also need to update .profile and
.cshre files to add or modify environment variables.

Many packages—for example, news transfer programs—create data in specific directo-
ries. Although initially there may be no data to install, the install process may need to
create the directories.

At some future date, you may want to remove the package again, or to install an updated
version. The installation routines should make some provision for removing the package
when you no longer want it.

Real-life packages differ significantly in their ability to perform these tasks. Some Makefiles
consider that their job is done when the package has been compiled, and leave it to you do
install the files manually. In some cases, as when there is only a single program, this is no
hardship, but it does require that you understand exactly what you need to install. On the
other hand, very few packages supply an uni nst al | target.

5 February 2005 02:09

125

126

In this chapter, we'll ook at the following subjects:

e Theway Makefi lestypically install software.

e Alternativesif the Makefi le doesn’'t do everything it should do.
e How toinstall documentation.

e How to keep track of installed software.

e How toremoveinstalled software.

Installation isan untidy area. At the end of this chapter, you'll probably be left with afeeling
of dissatisfaction—this area has been sadly neglected, and there just aren’t enough good
answers.

make install

The traditional way to install a pre-compiled package is with make install. Typicaly, it per-
forms the following functions:

* It creates the necessary directoriesif they are not there.
e Itcopiesall necessary fi les to their run-time locations.

e It setsthe permissions of the fi les to their correct values. This frequently reguires you to
be root when you install the package. If you don’t have root access, you should at least
arrange for accessto the directories into which you want to install.

e It may strip debug information from executables.
Some other aspects of make install are less unifi ed:

* make install may imply a make all: you can't install until you have made the package,
and you'll frequently see an install target that starts with

install: all
installati on comands

e On the other hand, make install may not only expect the make all to be completed—and
fail if it is not—but remove the executables after installation. Sometimes this is due to
the use of BSD install without the - ¢ option—see the section on the install program
below—but it means that if you want to make a change to the program after installation,
you effectively have to repeat the whole build. Removing fi les from the tree should be
left to make clean (see Chapter 5, Building the package, page 63).

* Someinstall targetsinstall man pages or other on-line documentation, others leave it to a
separate target with a name like i nstal | - man, and yet other Makefi les completely
ignore online documentation, even if the package suppliesit.

5 February 2005 02:09

5 February 2005 02:09

Chapter 9: Installation 127

Configuring the installed package

Some packages have run-time configuration files that need to be set up before the package
will run. Also, it’s not always enough just to install the files in the correct place and with the
correct permissions: you may need to modify the individual user’s environment before they
can use the package. Here are some examples:

« sendmail, the Internet mail transport agent, has an extremely complicated configuration
file sendmail.cf which needs to be set up to reflect your network topology. A description
of how to set up this file takes up hundreds of pages in sendmail, by Bryan Costales, Eric
Allman and Neil Rickert.

« Many X11 clients have supplementary files that define application defaults, which may
or may not be suitable for your environment. They are intended to be installed in a direc-
tory like /usr/X11/lib/X11/app-defaults. Not all Imakefi les perform this task.

« The path where the executables are installed should be in your PATH environment vari-
able.

« If you install man pages, the path should be in your MANPATH environment variable.

« Many packages define their own environment variables. For example, TEX defines the
environment variables TEXQONFI G TEXFONTS, TEXFCRVATS, TEXI NPUTS, and TEXPQCL
to locate its data files.

« Some programs require a setup file in the home directory of each user who uses the pro-
gram. Others do not require it, but will read it if it is present.

« Some programs will create links with other names. For example, if you install pax, the
portable archive exchange program, you have the opportunity of creating links called tar
and cpio. This is really a configuration option, but the Makefi le for pax does not account
forit.

Typical Makefi les are content with moving the files to where they belong, and leave such
details to the user. We’ll see an alternative on page 138.

Installing the correct files

At first, installation seems straightforward enough: you copy the files to where they belong,
and that’s that. In practice, a number of subtle problems can occur. There’s no hard and fast
solution to them, but if you run into trouble it helps to understand the problem.

To replace or not to replace?

Throughout the build process, we have used make to decide whether to rebuild a target or not:
if the target exists, and is newer than any of its dependencies, it will not be rebuilt. Tradition-
ally, installation is different: the files are installed anyway, even if newer files are already
present in the destination directory.

5 February 2005 02:09

128

The reasons for this behaviour are shrouded in time, but may be related to the fact that both
install (which we will discuss below) and cp traditionally modify the time stamps of the files,
so that the following scenario could occur:

1. Build version 1 of a package, and install it.

2. Start building version 2, but don’t complete it.

3. Make a modification to version 1, and re-install it.
4

Complete version 2, and install it. Some of the file in version 2 were compiled before
version 1 was re-installed, and are thus older than the installed files. As a result, they
will not be installed, and the installed software will be inconsistent.

It’s obviously safer to replace everything. But is that enough? We’ll look at the opposite prob-
lem in the next section.

Updating

Frequently you will install several versions of software over a period of time, as the package
evolves. Simply installing the new version on top of the old version will work cleanly only if
you can be sure that you install a new version of every file that was present in the old version:
otherwise some files from the old version will remain after installation. For example, version
1.07.6 of the GNU libc included a file include/sys/bitypes.h, which is no longer present in ver-
sion 1.08.6. After installing version 1.08.6, include/sys/bitypes.h is still present from the ear-
lier installation.

The correct way to handle this problem is to uninstall the old package before installation. For
reasons we will investigate on page 133, this seldom happens.

install

install is a program that is used in installing software. It performs the tasks of creating any
necessary directories, copying files, stripping executables, and setting permissions.

install originated in Berkeley, and older System V systems don’t support it. It’s a fairly trivial
program, of course, and many packages supply a script with a name like install.sh which per-
forms substantially the same functions. The source is available in the 4.4BSD Lite distribu-
tion—see Appendix E, Where to get sources.

Although install is a relatively simple program, it seems that implementors have done their
best to make it differ from one system to the next. The result is a whole lot of incompatible
and just downright confusing options. System V.4 even supplies two different versions with
conflicting options, a BSD compatible one and a native one—the one you get depends on

your other preferences, as laid down in your PATHenvironment variable.

System V.4 native install is sufficiently different from the others that we need to look at it sep-
arately—it can install only a single file. The syntax is:

Chapter 9: Installation 129

install options file [dir dir ...]

If the dirs are specified, they are appended to the fixed list of directories /bin, /usr/bin, /etc,
/lib, and /usr/lib. install will search the resultant list of directories sequentially for a file with

the name file. If it finds one, it will replace it and print a message stating in which directory it
has installed the file. The -i option tells install to omit the standard directories and take only
the list specified on the command line.

Other versions of install have a syntax similar to mv and cp, except that they take a number of

supplementary options:

install options filel file2
install options filel ... fileNdir

The first form installs filel as file2, the second form installs filel through fileN in the directory
dir.
Table 9-1 contains an overview of install options:

Table 9—1: install options

option Purpose

-C In BSD, copy the file. If this option is not specified, the file is moved (the origi-
nal file is deleted after copying).

In GNU and System V.4 (BSD compatibility), this option is ignored. Files are
always copied.

-c dir System V.4 native: install the file in directory dir only if the file does not already
exist. If the file exists already, exit with an error message.

-d In GNU and SunQS, create all necessary directories if the target directory does
not exist. Not available in BSD. This lets you create the directory with the com-
mand

install -d [-g group] [-mpern} [-0 owner] dir

-f flags In 4.4BSD, specify the target’s file flags. This relates to the chflags program in-
troduced with 4.4BSD—see the man page usr.bin/chflags/chflags.l in the
4.4BSD Lite distribution.

-f dir System V.4 native: force the file to be installed in dir. This is the default for oth-
er versions.

-g group | Setthe group ownership to group.

-i System V.4 native: ignore the default directory list (see below). This is not ap-
plicable with the - ¢ or - f options.

-m perm Set the file permissions to perm. perm may be in octal or symbolic form, as de-
fined for chmod(1). By default, perm is 0755 (r wxr - xr - X).

5 February 2005 02:09

5 February 2005 02:09

130

Table 9—1: install options (continued)

option Purpose
-n dir System V.4 native: if file isnot found in any of the directories, install it in dir.
-0 System V.4 native: if file is aready present at the destination, rename the old

version by prepending the letters QD to the fi lename. The old fi le remainsin the
same directory.

-0 owner | All except System V.4 native: change the owner to owner.
-s System V.4 native: suppress error messages.

-s All except System V.4 native: strip the fi nal binary.

-u owner | System V.4 native: change the owner to owner.

Other pointsto note are:

* install attemptsto prevent you from moving afi le onto itself.

e Instaling /dev/null creates an empty fi le.

» install exitswith areturn code of 0 if successful and 1 if unsuccessful.

System V.4 install is defi nitely the odd man out: if you can avoid it, do. Even Solaris 2 sup-
plies only the BSD version of install. On the other hand, pure BSD install aso has its prob-
lems, since it requires the - ¢ option to avoid removing the original fi les.

Installing documentation

Installing man pages would seem to be a trivial exercise. In fact, a number of problems can
occur. In this section, we'll look at problems you might encounter installing man pages and
GNU info.

Man pages.

Aswe saw in Chapter 7, Documentation, page 99, there is not much agreement about naming,
placing, or format of man pages. In order to install man pages correctly you need to know the
following things:

e The name of the man directory.
e Thenaming convention for man fi les. Aswe saw, these are many and varied.
e Whether the man pages should be formatted or not.

* If the man pages should be formatted, which formatter should be used? Which macros
should be used? This may seem like a decision to be made when building the package,
but many Makefiles put off this operation to the install phase.

« Whether the man pages should be packed, compressed or zipped.

5 February 2005 02:09

Chapter 9: Ingtallation 131

Typically, this information is supplied in the Makefi le like this example from the electronic
mail reader elm, which is one of the better ones:

FCRVATTER = [usr/ ucb/ nrof
MAN = / opt / man/ manl
MANEXT = .1

CATVAN = /opt/ man/ cat 1
CATMANEXT = .1

TBL = [usr/ucb/ t bl
MANRCFF = [usr/ ucb/ nrof
SUFF X = .z

PACKED = y

PACKER = / bi n/ conpr ess

List of installed nan pages (except for wienail.1 - handl ed differently)

MAN LI ST = $(MAN) / answer $(MANEXT) \
$(MAN) / aut or epl y$(MANEXT) \
...etc
List of installed catnman pages (except for wnenail.1 - handl ed differently)
CATMAN LI ST = $(CATVAN) / answer $(CATMANEXT) $(SUFFL X) \

$(CATMAN) / aut or epl y$(CATMANEXT) $(SUFFI X) \
..etc

List of formatted pages for catnan

FCRVATTED PAGES LI ST = cat man/ answer $(CATMANEXT) $(SUFFI X) \
cat man/ aut or epl y$(CATMANEXT) $(SUFFI)\

..etc

Targets
all:
@f $(TEST) '$(CATMAN)' !'= none; then $(MKE) fornatted pages ; \
else true ; fi

fornatted_pages: catnan $(FCRVATTED PAGES LI ST)

cat man:
nkdi r cat nan

install: $(LIB_LIST)
@f $(TEST) '$(MWN)' !'= none; then $(MKE) install_nan ; \
else true ; fi
@f $(TEST) ' $(CATMAN)' != none; then $(MXKE) install_catrman ; \
else true ; fi

install _man: $(MAN LI ST) $(MAN)/ wnewnai | $(MANEXT)
instal | _catrman: $(CATMAN LI ST) $(CATMAN) / wnewrrai | $(CATMANEXT) $(SUFFI X)

Dependenci es and rules for installing man pages and lib files
$(MAN) / answer $(MANEXT) : answer . 1

(P $? s@

$(CHMD) u=rw, go=r $@

132

$(MAN) / aut or epl y$(MANEXT) : autoreply. 1
(P $? @
$(CHMD) u=rw, go=r $@

This Makefi le is in the subdirectory doc, which is concerned only with documentation, so all
the targets relate to the man pages. The target al | makes the decision whether to format the
pages or not based on the value of the make variable CATMAN. If thisis set to the special value
none, the Makefi le does not format the pages.

Thetargeti nstal | uses the same technique to decide which man pagesto install: if the vari-
able MANis not set to none, the sources of the man pages are copied there, and if CATMAN is
not set to none, the formatted pages are installed there. This Makefi le does not use install: it
performs the operations with cp and chmod instead.

GNU info
Installing GNU info is somewhat more straightforward, but it is also not as clean as it could
be:

* info is always formatted, so you need the formatter, a program called makeinfo, which is
part of the texinfo package. Before you can run makeinfo, you need to port texinfo. It's
not that big ajob, but it needs to be done. Of course, in order to completely install tex-
info, you need to format the documentation with makeinfo—a vicious circle. The solu-
tion is to port the texinfo executables, then port makeinfo, and then format the texinfo
documentation.

* Allinfo fi les are stored in a single directory with an index fi le called dir. Thislooks like:

-*- Text -*-

This is the file /opt/info/dir, which contains the topnost node of the
Info hierarchy. The first tine you invoke Info you start off

| ooking at that node, which is (dir)Top.

File: dir Node: Top This is the top of the INFOtree
This (the Drectory node) gives a nenu of najor topics.
Typing "d" returns here, "g" exits, "?" lists all | N-O commands, "h"
gives a priner for first-tiners, "niexinfo<Return>" visits Texinfo topic,
etc.

Note that the presence of a nane in this list does not necessarily
nean that the documentation is available. It is installed with the
package in question. |f you get error nessages when trying to access
docunentation, make sure that the package has been install ed.

--- PLEASE ADD DOOUMENTATION TOTH S TREE (See INFOtopic first.) ---

* Menu: The list of najor topics begins on the next |ine.

* Bash: (bash). The G\U Bourne Again ShHel |l .

* Bfd: (bfd). The Binary File Descriptor Library.

* Bison: (bison). The Bison parser generator.

* QA (cl). Partial Gommon Lisp support for Emacs Lisp.

5 February 2005 02:09

5 February 2005 02:09

Chapter 9: Ingtallation 133

..etc

The lines at the bottom of the example are menu entries for each package. They have a
syntax which isn’'t immediately apparent—in particular, the sequence * item has a
special signifi cance in emacs info mode. Programs that supply info documentation
should supply such an entry, but many of them do not, and none of them install the line
in dir—you need to do this by hand.

Removing installed software

For a number of reasons, you may want to remove software that you have already installed:

You may decide you don't need the software.

You may want to replace it with a newer version, and you want to be sure that the old
version is gone.

You may want to install it in adifferent tree.

If you look for a remove or uninstall target in the Makefi le, chances are that you won't fi nd
one. Packages that supply a remove target are very rare. If you want to remove software, and
you didn't take any precautions when you installed it, you have to do it manually with the
computer equivalent of an axe and a spear: Isand rm.

Removing software manually

In fact, it's frequently not that diffi cult to remove software manually. The modifi cation time-
stamps of all components are usually within a minute or two of each other, so Iswith the- | t
options will list them all together. For example, let’'s consider the removal of ghostscript.

Thefi rst step isto go back to the Makefi le and see what it installed:

prefix = /opt
exec_prefix = $(prefix)
bindir = $(exec_prefix)/bin
datadir = $(prefix)/lib
gsdat adir = $(datadi r)/ ghostscri pt
mandi r = $(prefix)/man/ nanl
... ski ppi ng
install: $(C
-nkdir $(bindir)
for f in $(G gshj gsdj gslj gslp gsnd bdftops font2c \
ps2ascii ps2epsi; \
do $(I NSTALL_PROGRAN) $$f $(bindir)/$$f ; done
-nkdir $(datadir)
-nkdir $(gsdat adir)

for f in README gslp.ps gs_init.ps gs_dpsl.ps gs_fonts.ps gs_lev2. ps \
gs_statd. ps gs_type0. ps gs_dbt_e.ps gs_syme.ps quit.ps Fontnmap \

ugl yr. gsf bdftops. ps decrypt.ps font2c.ps inpath. ps | andscap. ps \
level 1. ps prfont.ps ps2ascii.ps ps2epsi.ps ps2i mage. ps pst oppm ps\

5 February 2005 02:09

134

One dternative is to make a remove target for this Makefi le, which isn’t too diffi cult in this

case:

showpage. ps typelops.ps wfont.ps ; \
do $(I NSTALL_DATA) $$f $(gsdatadir)/$$f ; done

-nkdir $(docdir)
for f in NEWS devices.doc drivers.doc fonts.doc hershey. doc \
hi story. doc hunor. doc | anguage. doc |ib. doc nake.doc ps2epsi.doc \
psfil es. doc readme. doc use.doc xfonts.doc ; \

do $(I NSTALL_DATA) $$f $(docdir)/$$f ; done
-nkdir $(nmandir)
for f inansi2knr.1 gs.1; do $(I NSTALL_DATA) $$f $(nandir)/$$f ; done
-nkdir $(exdir)
for f in chess.ps cheq.ps colorcir.ps gol fer.ps escher.ps \
snowf | ak. ps tiger.ps ; \

do $(I NSTALL_DATA) $3f $(exdir)/$3f ; done

* First, copy theinstall target and call it remove.

e Move the mkdir lines to the bottom and change them to rmdir. You'll notice that this
Makefi le accepts the fact that mkdir can fail because the directory aready exists (the- in
front of mkdir). We'll do the same with rmdir: if the directory isn't empty, rmdir fails,

but that's OK.
* Wereplace$(| NSTALL_PRORAV) $$f and $(| NSTALL_DATA) $$f withrm -f.

The result looks like:

renove:

$(®

for f in $(G gshj gsdj gslj gslp gsnd bdftops font2c \
ps2ascii ps2epsi; \

do rm-f $(bindir)/$$f ; done

for f in README gsl p.ps gs_init.ps gs_dpsl.ps gs_fonts.ps gs_lev2. ps \
gs_statd. ps gs_type0.ps gs_dbt_e.ps gs_syme.ps quit.ps Fontnap \
ugl yr. gsf bdftops. ps decrypt.ps font2c.ps inpath. ps | andscap. ps \
level 1. ps prfont.ps ps2ascii.ps ps2epsi.ps ps2i mage. ps pst oppm ps\
showpage. ps typelops.ps wfont.ps ; \

do rm-f $(gsdatadir)/$$f ; done

for f in NEWS devices.doc drivers.doc fonts.doc hershey. doc \
hi story. doc hunor. doc | anguage. doc |ib. doc nake.doc ps2epsi.doc \
psfil es. doc readme. doc use.doc xfonts.doc ; \
do rm-f $(docdir)/$$f ; done
for f inansi2knr.1 gs.1; do $(INSTALL_DATA) $$f $(nandir)/$$f ; done
for f in chess.ps cheg.ps colorcir.ps golfer.ps escher.ps \
snowf | ak. ps tiger.ps ;
do rm-f $(exdir)/$$f ; done
-rndir $(bindir)
-rndir $(datadir)
-rndi r $(gsdat adir)
-rndir $(docdir)
-rdir $(rmandir)

5 February 2005 02:09

Chapter 9: Ingtallation 135

-rmdir $(exdir)

More frequently, however, you can't use this approach: the Makefi le isn't as easy to fi nd, or
you have long since discarded the source tree. In this case, we'll have to do it differently.
First, wefi nd the directory where the executable gs, the main ghostscript program, is stored:

$ which gs
/opt/bin/gs

Then we look at the last modifi cation timestamp of /opt/bin/gs:

$1s -1 /opt/bin/gs
-rnxrxr-x 1 root wheel 3168884 Jun 18 14:29 /opt/bin/gs

Thisisto help usto know where to look in the next step: we list the directory /opt/bin sorted
by modifi cation timestamp. It's a lot easier to fi nd what we're looking for if we know the
date. If you don’'t have which, or possibly even if you do, you can use the following script,
called wh:

for j in $; do
for i in “echo $PATH|sed ’s/:/ /g”“; do
if [-F $i/3j 1; then
Is -1 $i/%j
Ti
done
done

wh searches the directories in the current environment variable PATH for a specifi ¢ fi le and
lists al occurrences in the order in which they appear in PATH in Is -l format, so you could
also have entered:

$ wh gs
-rxrxr-x 1 root wheel 3168884 Jun 18 14:29 /opt/bin/gs

Once we know the date we are looking for, it's easy to list the directory, page it through more
and fi nd the time frame we are looking for.

$1s -1t /opt/bin|nore

total 51068

—W——————- 1 root bin 294912 Sep 6 15:08 trn.old
-rxr-xr-x 1 grog lemis 106496 Sep 6 15:08 man
...skipping lots of stuff

-rw-rw-rw- 1 grog bin 370 Jun 21 17:24 prab™
-rw-rw-rw- 1 grog bin 370 Jun 21 17:22 parb
-rw-rw-rw- 1 grog bin 196 Jun 21 17:22 parb™
-rxrwxrvx 1 grog wheel 469 Jun 18 15:19 tep
-rxrwxr-x 1 root wheel 52 Jun 18 14:29 font2c
-nxnvxr-x 1 root wheel 807 Jun 18 14:29 ps2epsi
-rxrxr-x 1 root wheel 35 Jun 18 14:29 bhdftops
-rxrvxr-x 1 root wheel 563 Jun 18 14:29 ps2ascii
-nxnvxr-x 1 root wheel 50 Jun 18 14:29 gslp
-rxrwxr-x 1 root wheel 3168884 Jun 18 14:29 gs
-rxrxr-x 1 root wheel 53 Jun 18 14:29 gsdj
-nxnvxr-x 1 root wheel 51 Jun 18 14:29 gsbj

136

-rxrxr-x 1 root wheel 18 Jun 18 14:29 gsnd
-nxnvxr-x 1 root wheel 54 Jun 18 14:29 gslj
-nWXr-xr-x 1 root bin 81165 Jun 18 12:41 faxaddmodem
-r-xr-xr-x 1 bin bin 249856 Jun 17 17:18 faxinfo
-r-xr-xr-x 1 bin bin 106496 Jun 17 15:50 dialtest

...more stuff follows

It's easy to recognize the programs in this format: they were al installed in the same minute,
and the next older fi le (faxaddmodem) is more than 90 minutes older, the next newer fi le (tep)
is 50 minutes newer. The fi les we want to remove are, in sequence, font2c, ps2epsi, bdftops,
ps2ascii, gslp, gs, gsdj, gshj, gsnd and gdlj.

We're not done yet, of course: ghostscript also installs alot of fonts and PostScript fi les, aswe
saw in the Makefi le. How do we fi nd and remove them? It helps, of course, to have the Make-
file, from which we can see that the files are installed in the directories /opt/bin,
/opt/lib/ghostscript and /opt/man/manl (see the Makefi le excerpt on page 133). If you don't
have the Makefi le, all is not lost, but things get alittle more complicated. You can search the
complete directory tree for fi les modifi ed between Jun 18 14:00 and Jun 18 14:59 with:

$find /opt -follow-type f -print|xargs Is -1|grep "Jun 18 14:"

-rxrwxr-x 1 root wheel 35 Jun 18 14:29 /opt/bin/bdftops

...etc

-rw-rw-r-- 1 root wheel 910 Jun 18 14:29 /opt/man/manl/ansi2knr.1

-rw-rw-r-- 1 root wheel 10005 Jun 18 14:29 /opt/man/manl/gs.1

-rw-rw-r-- 1 root wheel 11272 Jun 18 14:29 /opt/lib/ghostscript/Fontmap
-rw-rw-r-- 1 root wheel 22789 Jun 18 14:29 /opt/lib/ghostscript/bdftops.ps
-rw-rw-r-- 1 root wheel 295 Jun 18 14:29 /opt/lib/ghostscript/decrypt.ps
-rw-rw-r-- 1 root wheel 74791 Jun 18 14:29 /opt/lib/ghostscript/doc/NEWS
-rw-rw-r-- 1 root wheel 13974 Jun 18 14:29 /opt/lib/ghostscript/doc/devices.doc

...many nore files
There are a couple of pointsto note here:

* We used GNU fi nd, which uses the —fol low option to follow symbolic links. If your
/opt hierarchy contains symbolic links, fi nd would otherwise not search the subdirecto-
ries. Other versions of fi nd may require different options.

* Youcan't usels-IR here because Is -IR does not show the full pathnames: you would fi nd
the fi les, but the name at the end of the line would just be the name of the fi le, and you
wouldn’t know the name of the directory.

* |f thefi leis morethan six monthsold, Is-I will list it inthe form
-rwxrwxrwx 1 grog wheel 22 Feb 10 1994 xyzzy

This may be enough to differentiate between the fi les, but it's less certain. GNU Is (in
the fi leutils package) includes a option ——full-time (note the two leading hyphens).
Thiswill always print the full time, regardless of the age of the fi le. With this option, the
fi le above will list as:

$1s --full-time -1 xyzzy
-rwxrwxrwx 1 grog wheel 22 Thu Feb 10 16:00:24 1994 xyzzy

5 February 2005 02:09

5 February 2005 02:09

Chapter 9: Ingtallation 137

Removing too much

None of these methods for removing installed software can handle one remaining serious
problem: some programs install a modifi ed version of a standard program, and if you remove
the package, you remove all trace of this standard program. For example, GNU tar and GNU

cpio both include the remote tape protocol program rmt. If you install both of these packages,

and then decide to remove cpio, tar will not work properly either. It's not aways enough to
keep track of which packages depend on which programs: in some cases, a modifi ed version
of a program is installed by a package, and if you remove the package, you need to re-install

the old version of the program.

Keeping track of installed software
All the methods we've seen so far smell strongly of kludge:
« They involve signifi cant manual intervention, which is proneto error.

e The remove or uninstall targets of a Makefi le are based on names not contents. If you
stop using a package, and install a new one with some names that overlap the names of
the old package, and then remove the old package, the fi les from your new package will
go too.

e The manual method based on the dates does not discover confi guration or data fi les—if
you remove net news from a system, you will have to remember to remove the news
spool area as well, because that certainly won't have the same modifi cation timestamp as
the installed software.

e It'samost impossible to safely and automatically remove modifi cations to environment
variablesin .cshrc and .profi lefi les.

We can come closer to our goa if we have a method to keep track of the fi les that were actu-
aly installed. This requires the maintenance of some kind of database with information about
the relationship between packages and fi les. Idealy,

e It would contain a list of the fi les installed, including their sizes and modifi cation time-
stamps.

e It would prevent modifi cation to the package except by well-defi ned procedures.

« It would contain alist of the fi les that were modifi ed, including diffs to be able to reverse
them.

« It would keep track of the modifi cations to the package as time went by: which fi leswere
created by the package, which fi les were modifi ed.

Thisisanideal, but the System V.4 pkgadd system comes reasonably close, and the concept is
simple enough that we can represent the most important features as shell scripts. We'll look
at it in the next section.

5 February 2005 02:09

138

System V pkgadd

UNIX System V.4 is supplied as a number of binary packages —you can choose which to
install and which not to install. You can even choose whether or not to install such seemingly
essential components as networking support and man pages.

Packages can be created in two formats. stream format for installation from serial data media
like tapes, and fi le system format for installation from fi le systems. In many cases, such as
diskettes, either form may be used. The program pkgtrans transforms one format into the
other. In thefollowing discussion, we'll assume fi le system format.

The package tools offer a bewildering number of options, most of which are not very useful.
WE'II limit our discussion to standard cases: in particular, we won't discuss classes and multi-
part packages. If you are using System V.4 and want to use other features, you should read
the documentation supplied with the system. In the following sections we'll look at the indi-
vidual components of the packages.

pkginfo

The fi le pkginfo, in the root directory of the package, contains general information about the
package, some of which may be used to decide whether or not to install the package. For
example, the pkginfo fi le for an installable emacs package might look like:

ARCH=i 386 the architecture for which the package is intended
PKG=enacs the nane of the package

VERS| ON-19. 22 t he version nunber

NAME=Emacs text editor a brief description

CATEQRY=utilities the kind of package

CLASSES=none class infornation

VENDCR=Fr ee Sof tware Foundation the nane of the owner
HOTLI NE=LEM S, +49- 6637- 919123, Fax +49-6637-919122 who to call if you have troubl e
BEMVAl L=l em s@eni s. de mai | for HOTLINE

Thisinformation is displayed by pkgadd as information to the user before installation.

pkgmap
The fi le pkgmap is aso in the root directory of the package. It contains information about the
destination of the individual fi les. For example, from the same emacs package,

1 37986

d none /opt 0755 bin bin

d none /opt/README 0755 bin bin

f none /opt/ README enacs- 19. 22 0644 root sys 1518 59165 760094611
d none /opt/bin 0755 bin bin

f none /opt/bin/enacs 0755 root sys 1452488 11331 760577316

f none /opt/bin/etags 0755 root sys 37200 20417 760577318

PR R RPR PR

* Asused here, the term package is a collection of precompiled programs and data and information nec-
essary to install them—this isn’t the same thing as the kind of package we have been talking about in
the rest of this book.

Chapter 9: Ingtallation 139

PR RPRRRRRER
oo —+—+—+qa

none /opt/info 0755 bin bin

none /opt/info/cl.info 0644 root sys 3019 62141 760094526

none /opt/info/dir 0644 root sys 2847 23009 760559075

none /opt/info/ enacs 0644 root sys 10616 65512 760094528

none /opt/lib 0755 bin bin

none /opt/lib/emacs 0755 bin bin

none /opt/lib/emacs/ 19. 22 0755 bin bin

none /opt/lib/emacs/ 19. 22/ etc 0755 bin bin

none /opt/1ib/emacs/ 19. 22/ et c/ 3B- MAXMEM 0644 root sys 1913 18744 574746032

The fi rst line specifi es that the package consists of a single part, and that it consists of 37986
512 byte blocks. The other lines describe fi les or directories:

The fi rst parameter isthe part to which the fi le belongs.

The next parameter specifi es whether the fi leisaplain fi le (f), adirectory (d), alink (1)
or asymbolic link (s). A number of other abbreviations are also used.

The next parameter is the class of the file. Like most packages, this package does not
use classes, so the classis always set to none.

The following four parameters specify the name of the installed object, its permissions,
the owner and the group.

After this come the size of the file, a checksum and the modifi cation time in naked
tine_t format. The checksum ensures that the package is relatively protected against
data corruption or deliberate modifi cation.

Package subdirectories

In addition to the fi les in the main directory, packages contain two subdirectories root and
install:

5 February 2005 02:09

root contains the files that are to be installed. All the fi les described in pkgmap are
present under the same names in root (for example, /opt/bin/emacs is called
root/opt/binfemacs in the package).

The fi le install/copyright contains a brief copyright notice that is displayed on installa-
tion. pkgadd does not wait for you to read this, so it should really be brief.

Optionally, there may be scripts with names like install/preinstall and install/postinstall
which are executed before and after copying the fi les, respectively. preinstall might, for
example, set up the directory structure /opt if it does not already exist. postinstall might
update .cshrc and .profi le fi les. In some cases, it may need to do more. For example, the
SO 9660 directory standard for CD-ROMSs limits allows only eight nested directories (in
other words, the directory /a/b/c/d/e/fig/ih/i is nested too deeply). gcc on a CD-ROM
would violate this limitation, so some of the package has to be stored as a ter fi le, and the
postinstall script extractsit to the correct position.

5 February 2005 02:09

140

pkgadd
With this structure, adding a package is aimost child's play: you just have to enter
$ pkgadd enacs

WEell, almost. The name emacs is the name of the package and not a fi le name. By default,
pkgadd expects to fi nd it in /var/spool/pkg. If your package is elsewhere, you can't tell
pkgadd simply by prepending the name—instead, you need to specify it with the - d option:

$ pkgadd -d /cdrom enacs

Thiswill install emacs from the directory cdrom.

Removing packages

One really nice thing about the System V.4 package system is the ease with which you can
remove a package. Assuming that you have decided that vi is a better choice than emacs, or
you just don’'t have the 19 MB that the emacs package takes up, you just have to type:

$ pkgr m enacs

and all the fi leswill be removed.

Making installable packages

The discussion of pkgadd assumes that you aready have an instalable package. This is

appropriate for System V.4, but if you have just ported a software package, you fi rst need to
create an installable binary package from it. Thisis the purpose of pkgmk. It takes a number

of input files, the most important of which is prototype: it describes which fi les should be
installed. It isalmost identical in format to the pkgmap fi le we discussed above. For example,
the prototype fi le for the emacs example above looks like:

Prototype file created by /cdcopy/ ETC t ool s/ nknkpk on Véd Jan 19 18:24: 41 VT 1994
i pkginfo

preinstal |

postinstall

copyri ght

Required directories

none /opt 755 bin bin

none /opt/bin 755 bin bin

none /opt/ README 755 bin bin

none /opt/man 755 bin bin

none /opt/lib 755 bin bin

none /opt/lib/emacs 755 bin bin

none /opt/lib/emacs/ 19.22 755 bin bin

none /opt/lib/emacs/ 19. 22/ etc 755 bin bin

none /opt/info 755 bin bin

Required files

none /opt/1ib/emacs/ 19. 22/ et c/ 3B- MAXMEM 644 root sys
none /opt/bin/emacs 755 root sys

" FooO0O0O0O0O0O0Q FH T T

Chapter 9: Ingtallation 141

f none /opt/infol emacs 644 root sys
f none /opt/info/dir 644 root sys

This looks rather different from pkgmap:

e There are comment lines starting with #. Thefi rst line indicates that this fi e was created
by ascript. Later on we'll seethe kind of function mkmkpk might perform.

e Thefirst column (part number) and the last three columns (size, checksum and modifi ca-
tion timestamp) are missing.

* Some lines start with the keyletter i . These describe installation fi les: we recognize the
names from the discussion above. pkgmk copies these fi les into the directory tree as dis-
cussed above. What is not so immediately obvious is that pkginfo is placed in the main
directory of the package, and the others are placed in the subdirectory install. It is aso
not obvious that some of these fi les are required: if they are not specifi ed, pkgmk dies.

Making a prototype file

There's still a gap between the original make install and building an installable package. We
need a prototype fi le, but make install just installs software. The packaging tools include a
program called pkgproto that purports to build prototype fi les. It searches a directory recur-
sively and creates prototype entries for every fi leit fi nds. If you have just installed emacs, say,
in your /opt directory, pkgproto will give you a prototype including every fi le in /opt, includ-
ing all the packages which are already installed there—not what you want. There are a num-
ber of alternatives to solve this problem:

e You can ingtall into a different directory. pkgproto supports this idea: you can invoke it
with

$ pkgproto /tnp-opt=/opt

which will tell it to search the directory /tmp-opt and generate entries for /opt. The dis-
advantage of this approach is that you may end up building programs with the path /tmp-
opt hard coded into the executables, and though it may test just fi ne on your system, the
executable fi leswill not work on the target system—defi nitely a situation to avoid.

e You rename /opt temporarily and install emacs in a new directory, which you can then
rename. Thisvirtually requires you to be the only user on the system.

e Before installing emacs, you create a dummy fi le stamp-emacs just about anywhere on
the system. Then you install emacs, and make alist of the fi les you have just installed:

$ find /opt -follow -cnewer stanp-enacs -type f -print | xargs I's -1 >info

This requires you to be the only person on the system who can write to the directory at
the time. This is more not as simple as you might think. Mail and news can come in
even if nobody else is using the system. Of course, they won't usually write in the same
directories that you're looking in. Nevertheless, you should be prepared for a few sur-
prises. For example, you might fi nd afi lelikethisin your list:

5 February 2005 02:09

5 February 2005 02:09

142

/opt/1iblenacs/| ock/! cdcopy! SORCE Core! gli bc- 1. 07! version. c

This is an emacs lock fi le: it is created by emacs when somebody modifi es a buffer (in
this case, a file called /cdcopy/SOURCE/Core/glibc-1.07/version.c: emacs replaces the
slashes in the fi le name by exclamation marks), and causes another emacs to warn the
user before it, too, tries to modify the same fi le. It contains the pid of the emacs process
that has the modifi ed buffer. Obviously you don’t want to include this fi le in your instal-
lable package.

Once you have tidied up your list of fi les, you can generate a prototype fi le with the aid
of ashell script or an editor.

Running pkgmk

Once you have a prototype fi le, you're nearly home. All you haveto do is run pkgmk. We run
into terminology problems here: throughout this book, we have been using the term package
to refer to the software we are building. More properly, this is the software package. pkgmk
refersto its output as a package too—here, we'll refer to it as the installable package.
Unfortunately, pkgmk handles some pathnames strangely. You can read the man page (prefer-
ably several times), or use this method, which works:

Before building the installable package, change to the root directory of the software
package.

Ignore path specifi cations in the prototype fi le and specify the root path as the root fi le
system: -r /.

Specify the base directory as the root directory of the package: since that's the directory
we'rein, justadd-b ‘ pwd‘ .

Choose to overwrite any existing package: - 0.

Specify the destination path explicitly: -d /usr/pkg. pkgmk creates packages will as
subdirectories in this directory: the package gcc would create a directory hierarchy
Jusr/pkg/gcc.

The resultant call doesn’t change from one package to the next: it is

pkgnk -r / -b ‘pwd’ -0 -d /usr/pkg

There is a whole lot more to using pkgmk, of course, but if you have pkgmk, you will aso
have the man pages, and that’s the best source of further information.

