
9
Installation

Finally the package has been built and tested, and it works. Up to this point, everything in the
package has been in the private source tree where it has been built. Most packages are not
intended to be executed from the source directory: before we can use them, we need to move
the component parts to their intended directories. In particular:

• We need to put executables where a normal PATH environment variable will find them.

• We need to place on-line documentation in the correct directories in a form that the docu-
ment browser understands.

• The installed software needs to be given the correct permissions to do what it has to do:
all executables need to have their execute permissions set, and some programs may need
setuid or setgid bits set (see Chapter 12, Kernel dependencies, page). In addition, soft-
ware will frequently be installed in directories to which normal users have no access. In
these cases, the install must be done by root.

• Library routines and configuration files need to be installed where the package expects
them: the location could be compiled into the programs, or an environment variable
could point to the location.

• If the package uses environment variables, you may also need to update .profile and
.cshrc files to add or modify environment variables.

• Many packages — for example, news transfer programs—create data in specific directo-
ries. Although initially there may be no data to install, the install process may need to
create the directories.

• At some future date, you may want to remove the package again, or to install an updated
version. The installation routines should make some provision for removing the package
when you no longer want it.

Real-life packages differ significantly in their ability to perform these tasks. Some Makefiles
consider that their job is done when the package has been compiled, and leave it to you do
install the files manually. In some cases, as when there is only a single program, this is no
hardship, but it does require that you understand exactly what you need to install. On the
other hand, very few packages supply an uninstall target.

125

5 February 2005 02:09

126

In this chapter, we’ll look at the following subjects:

• The way Makefiles typically install software.

• Alternatives if the Makefile doesn’t do everything it should do.

• How to install documentation.

• How to keep track of installed software.

• How to remove installed software.

Installation is an untidy area. At the end of this chapter, you’ll probably be left with a feeling
of dissatisfaction — this area has been sadly neglected, and there just aren’t enough good
answers.

make install
The traditional way to install a pre-compiled package is with make install. Typically, it per-
forms the following functions:

• It creates the necessary directories if they are not there.

• It copies all necessary files to their run-time locations.

• It sets the permissions of the files to their correct values. This frequently requires you to
be root when you install the package. If you don’t hav e root access, you should at least
arrange for access to the directories into which you want to install.

• It may strip debug information from executables.

Some other aspects of make install are less unified:

• make install may imply a make all: you can’t install until you have made the package,
and you’ll frequently see an install target that starts with

install: all
installation commands

• On the other hand, make install may not only expect the make all to be completed—and
fail if it is not—but remove the executables after installation. Sometimes this is due to
the use of BSD install without the -c option — see the section on the install program
below—but it means that if you want to make a change to the program after installation,
you effectively have to repeat the whole build. Removing files from the tree should be
left to make clean (see Chapter 5, Building the package, page 63).

• Some install targets install man pages or other on-line documentation, others leave it to a
separate target with a name like install-man, and yet other Makefiles completely
ignore online documentation, even if the package supplies it.

5 February 2005 02:09

Chapter 9: Installation 127

Configuring the installed package
Some packages have run-time configuration files that need to be set up before the package
will run. Also, it’s not always enough just to install the files in the correct place and with the
correct permissions: you may need to modify the individual user’s environment before they
can use the package. Here are some examples:

• sendmail, the Internet mail transport agent, has an extremely complicated configuration
file sendmail.cf which needs to be set up to reflect your network topology. A description
of how to set up this file takes up hundreds of pages in sendmail, by Bryan Costales, Eric
Allman and Neil Rickert.

• Many X11 clients have supplementary files that define application defaults, which may
or may not be suitable for your environment. They are intended to be installed in a direc-
tory like /usr/X11/lib/X11/app-defaults. Not all Imakefiles perform this task.

• The path where the executables are installed should be in your PATH environment vari-
able.

• If you install man pages, the path should be in your MANPATH environment variable.

• Many packages define their own environment variables. For example, TEX defines the
environment variables TEXCONFIG, TEXFONTS, TEXFORMATS, TEXINPUTS, and TEXPOOL
to locate its data files.

• Some programs require a setup file in the home directory of each user who uses the pro-
gram. Others do not require it, but will read it if it is present.

• Some programs will create links with other names. For example, if you install pax, the
portable archive exchange program, you have the opportunity of creating links called tar
and cpio. This is really a configuration option, but the Makefile for pax does not account
for it.

Typical Makefiles are content with moving the files to where they belong, and leave such
details to the user. We’ll see an alternative on page 138.

Installing the correct files
At first, installation seems straightforward enough: you copy the files to where they belong,
and that’s that. In practice, a number of subtle problems can occur. There’s no hard and fast
solution to them, but if you run into trouble it helps to understand the problem.

To replace or not to replace?
Throughout the build process, we have used make to decide whether to rebuild a target or not:
if the target exists, and is newer than any of its dependencies, it will not be rebuilt. Tradition-
ally, installation is different: the files are installed anyway, even if newer files are already
present in the destination directory.

5 February 2005 02:09

128

The reasons for this behaviour are shrouded in time, but may be related to the fact that both
install (which we will discuss below) and cp traditionally modify the time stamps of the files,
so that the following scenario could occur:

1. Build version 1 of a package, and install it.

2. Start building version 2, but don’t complete it.

3. Make a modification to version 1, and re-install it.

4. Complete version 2, and install it. Some of the file in version 2 were compiled before
version 1 was re-installed, and are thus older than the installed files. As a result, they
will not be installed, and the installed software will be inconsistent.

It’s obviously safer to replace everything. But is that enough? We’ll look at the opposite prob-
lem in the next section.

Updating
Frequently you will install several versions of software over a period of time, as the package
ev olves. Simply installing the new version on top of the old version will work cleanly only if
you can be sure that you install a new version of every file that was present in the old version:
otherwise some files from the old version will remain after installation. For example, version
1.07.6 of the GNU libc included a file include/sys/bitypes.h, which is no longer present in ver-
sion 1.08.6. After installing version 1.08.6, include/sys/bitypes.h is still present from the ear-
lier installation.

The correct way to handle this problem is to uninstall the old package before installation. For
reasons we will investigate on page 133, this seldom happens.

install
install is a program that is used in installing software. It performs the tasks of creating any
necessary directories, copying files, stripping executables, and setting permissions.

install originated in Berkeley, and older System V systems don’t support it. It’s a fairly trivial
program, of course, and many packages supply a script with a name like install.sh which per-
forms substantially the same functions. The source is available in the 4.4BSD Lite distribu-
tion — see Appendix E, Where to get sources.

Although install is a relatively simple program, it seems that implementors have done their
best to make it differ from one system to the next. The result is a whole lot of incompatible
and just downright confusing options. System V.4 even supplies two different versions with
conflicting options, a BSD compatible one and a native one — the one you get depends on
your other preferences, as laid down in your PATH environment variable.

System V.4 native install is sufficiently different from the others that we need to look at it sep-
arately — it can install only a single file. The syntax is:

5 February 2005 02:09

Chapter 9: Installation 129

install options file [dir dir ...]

If the dirs are specified, they are appended to the fixed list of directories /bin, /usr/bin, /etc,
/lib, and /usr/lib. install will search the resultant list of directories sequentially for a file with
the name file. If it finds one, it will replace it and print a message stating in which directory it
has installed the file. The -i option tells install to omit the standard directories and take only
the list specified on the command line.

Other versions of install have a syntax similar to mv and cp, except that they take a number of
supplementary options:

install options file1 file2
install options file1 ... fileN dir

The first form installs file1 as file2, the second form installs file1 through fileN in the directory
dir.

Table 9-1 contains an overview of install options:

Table 9−1: install options

option Purpose

-c In BSD, copy the file. If this option is not specified, the file is moved (the origi-
nal file is deleted after copying).

In GNU and System V.4 (BSD compatibility), this option is ignored. Files are
always copied.

-c dir System V.4 native: install the file in directory dir only if the file does not already
exist. If the file exists already, exit with an error message.

-d In GNU and SunOS, create all necessary directories if the target directory does
not exist. Not available in BSD. This lets you create the directory with the com-
mand

install -d [-g group] [-m perm] [-o owner] dir

-f flags In 4.4BSD, specify the target’s file flags. This relates to the chflags program in-
troduced with 4.4BSD—see the man page usr.bin/chflags/chflags.1 in the
4.4BSD Lite distribution.

-f dir System V.4 native: force the file to be installed in dir. This is the default for oth-
er versions.

-g group Set the group ownership to group.

-i System V.4 native: ignore the default directory list (see below). This is not ap-
plicable with the -c or -f options.

-m perm Set the file permissions to perm. perm may be in octal or symbolic form, as de-
fined for chmod(1). By default, perm is 0755 (rwxr-xr-x).

5 February 2005 02:09

130

Table 9−1: install options (continued)

option Purpose

-n dir System V.4 native: if file is not found in any of the directories, install it in dir.

-o System V.4 native: if file is already present at the destination, rename the old
version by prepending the letters OLD to the filename. The old file remains in the
same directory.

-o owner All except System V.4 native: change the owner to owner.

-s System V.4 native: suppress error messages.

-s All except System V.4 native: strip the final binary.

-u owner System V.4 native: change the owner to owner.

Other points to note are:

• install attempts to prevent you from moving a file onto itself.

• Installing /dev/null creates an empty file.

• install exits with a return code of 0 if successful and 1 if unsuccessful.

System V.4 install is definitely the odd man out: if you can avoid it, do. Even Solaris 2 sup-
plies only the BSD version of install. On the other hand, pure BSD install also has its prob-
lems, since it requires the -c option to avoid removing the original files.

Installing documentation
Installing man pages would seem to be a trivial exercise. In fact, a number of problems can
occur. In this section, we’ll look at problems you might encounter installing man pages and
GNU info.

Man pages.
As we saw in Chapter 7, Documentation, page 99, there is not much agreement about naming,
placing, or format of man pages. In order to install man pages correctly you need to know the
following things:

• The name of the man directory.

• The naming convention for man files. As we saw, these are many and varied.

• Whether the man pages should be formatted or not.

• If the man pages should be formatted, which formatter should be used? Which macros
should be used? This may seem like a decision to be made when building the package,
but many Makefiles put off this operation to the install phase.

• Whether the man pages should be packed, compressed or zipped.

5 February 2005 02:09

Chapter 9: Installation 131

Typically, this information is supplied in the Makefile like this example from the electronic
mail reader elm, which is one of the better ones:

FORMATTER = /usr/ucb/nroff
MAN = /opt/man/man1
MANEXT = .1
CATMAN = /opt/man/cat1
CATMANEXT = .1
TBL = /usr/ucb/tbl
MANROFF = /usr/ucb/nroff
SUFFIX = .Z
PACKED = y
PACKER = /bin/compress

List of installed man pages (except for wnemail.1 - handled differently)
MAN_LIST = $(MAN)/answer$(MANEXT) \

$(MAN)/autoreply$(MANEXT) \
...etc
List of installed catman pages (except for wnemail.1 - handled differently)
CATMAN_LIST = $(CATMAN)/answer$(CATMANEXT)$(SUFFIX) \

$(CATMAN)/autoreply$(CATMANEXT)$(SUFFIX) \
...etc

List of formatted pages for catman
FORMATTED_PAGES_LIST = catman/answer$(CATMANEXT)$(SUFFIX) \

catman/autoreply$(CATMANEXT)$(SUFFIX) \
...etc

Targets
all:

@if $(TEST) ’$(CATMAN)’ != none; then $(MAKE) formatted_pages ; \
else true ; fi

formatted_pages: catman $(FORMATTED_PAGES_LIST)

catman:
mkdir catman

install: $(LIB_LIST)
@if $(TEST) ’$(MAN)’ != none; then $(MAKE) install_man ; \

else true ; fi
@if $(TEST) ’$(CATMAN)’ != none; then $(MAKE) install_catman ; \

else true ; fi

install_man: $(MAN_LIST) $(MAN)/wnewmail$(MANEXT)

install_catman: $(CATMAN_LIST) $(CATMAN)/wnewmail$(CATMANEXT)$(SUFFIX)

Dependencies and rules for installing man pages and lib files
$(MAN)/answer$(MANEXT): answer.1

$(CP) $? $@
$(CHMOD) u=rw,go=r $@

5 February 2005 02:09

132

$(MAN)/autoreply$(MANEXT): autoreply.1
$(CP) $? $@
$(CHMOD) u=rw,go=r $@

This Makefile is in the subdirectory doc, which is concerned only with documentation, so all
the targets relate to the man pages. The target all makes the decision whether to format the
pages or not based on the value of the make variable CATMAN. If this is set to the special value
none, the Makefile does not format the pages.

The target install uses the same technique to decide which man pages to install: if the vari-
able MAN is not set to none, the sources of the man pages are copied there, and if CATMAN is
not set to none, the formatted pages are installed there. This Makefile does not use install: it
performs the operations with cp and chmod instead.

GNU info
Installing GNU info is somewhat more straightforward, but it is also not as clean as it could
be:

• info is always formatted, so you need the formatter, a program called makeinfo, which is
part of the texinfo package. Before you can run makeinfo, you need to port texinfo. It’s
not that big a job, but it needs to be done. Of course, in order to completely install tex-
info, you need to format the documentation with makeinfo—a vicious circle. The solu-
tion is to port the texinfo executables, then port makeinfo, and then format the texinfo
documentation.

• All info files are stored in a single directory with an index file called dir. This looks like:

-*- Text -*-
This is the file /opt/info/dir, which contains the topmost node of the
Info hierarchy. The first time you invoke Info you start off
looking at that node, which is (dir)Top.

File: dir Node: Top This is the top of the INFO tree
This (the Directory node) gives a menu of major topics.
Typing "d" returns here, "q" exits, "?" lists all INFO commands, "h"
gives a primer for first-timers, "mTexinfo<Return>" visits Texinfo topic,
etc.

Note that the presence of a name in this list does not necessarily
mean that the documentation is available. It is installed with the
package in question. If you get error messages when trying to access
documentation, make sure that the package has been installed.
--- PLEASE ADD DOCUMENTATION TO THIS TREE. (See INFO topic first.) ---

* Menu: The list of major topics begins on the next line.

* Bash: (bash). The GNU Bourne Again SHell.
* Bfd: (bfd). The Binary File Descriptor Library.
* Bison: (bison). The Bison parser generator.
* CL: (cl). Partial Common Lisp support for Emacs Lisp.

5 February 2005 02:09

Chapter 9: Installation 133

...etc

The lines at the bottom of the example are menu entries for each package. They hav e a
syntax which isn’t immediately apparent—in particular, the sequence * item: has a
special significance in emacs info mode. Programs that supply info documentation
should supply such an entry, but many of them do not, and none of them install the line
in dir—you need to do this by hand.

Removing installed software
For a number of reasons, you may want to remove software that you have already installed:

• You may decide you don’t need the software.

• You may want to replace it with a newer version, and you want to be sure that the old
version is gone.

• You may want to install it in a different tree.

If you look for a remove or uninstall target in the Makefile, chances are that you won’t find
one. Packages that supply a remove target are very rare. If you want to remove software, and
you didn’t take any precautions when you installed it, you have to do it manually with the
computer equivalent of an axe and a spear: ls and rm.

Removing software manually
In fact, it’s frequently not that difficult to remove software manually. The modification time-
stamps of all components are usually within a minute or two of each other, so ls with the -lt
options will list them all together. For example, let’s consider the removal of ghostscript.

The first step is to go back to the Makefile and see what it installed:

prefix = /opt
exec_prefix = $(prefix)
bindir = $(exec_prefix)/bin
datadir = $(prefix)/lib
gsdatadir = $(datadir)/ghostscript
mandir = $(prefix)/man/man1
...skipping
install: $(GS)

-mkdir $(bindir)
for f in $(GS) gsbj gsdj gslj gslp gsnd bdftops font2c \

ps2ascii ps2epsi; \
do $(INSTALL_PROGRAM) $$f $(bindir)/$$f ; done
-mkdir $(datadir)
-mkdir $(gsdatadir)

for f in README gslp.ps gs_init.ps gs_dps1.ps gs_fonts.ps gs_lev2.ps \
gs_statd.ps gs_type0.ps gs_dbt_e.ps gs_sym_e.ps quit.ps Fontmap \
uglyr.gsf bdftops.ps decrypt.ps font2c.ps impath.ps landscap.ps \
level1.ps prfont.ps ps2ascii.ps ps2epsi.ps ps2image.ps pstoppm.ps\

5 February 2005 02:09

134

showpage.ps type1ops.ps wrfont.ps ; \
do $(INSTALL_DATA) $$f $(gsdatadir)/$$f ; done

-mkdir $(docdir)
for f in NEWS devices.doc drivers.doc fonts.doc hershey.doc \
history.doc humor.doc language.doc lib.doc make.doc ps2epsi.doc \
psfiles.doc readme.doc use.doc xfonts.doc ; \
do $(INSTALL_DATA) $$f $(docdir)/$$f ; done

-mkdir $(mandir)
for f in ansi2knr.1 gs.1 ; do $(INSTALL_DATA) $$f $(mandir)/$$f ; done
-mkdir $(exdir)
for f in chess.ps cheq.ps colorcir.ps golfer.ps escher.ps \
snowflak.ps tiger.ps ; \
do $(INSTALL_DATA) $$f $(exdir)/$$f ; done

One alternative is to make a remove target for this Makefile, which isn’t too difficult in this
case:

• First, copy the install target and call it remove.

• Move the mkdir lines to the bottom and change them to rmdir. You’ll notice that this
Makefile accepts the fact that mkdir can fail because the directory already exists (the - in
front of mkdir). We’ll do the same with rmdir: if the directory isn’t empty, rmdir fails,
but that’s OK.

• We replace $(INSTALL_PROGRAM) $$f and $(INSTALL_DATA) $$f with rm -f.

The result looks like:

remove: $(GS)
for f in $(GS) gsbj gsdj gslj gslp gsnd bdftops font2c \

ps2ascii ps2epsi; \
do rm -f $(bindir)/$$f ; done

for f in README gslp.ps gs_init.ps gs_dps1.ps gs_fonts.ps gs_lev2.ps \
gs_statd.ps gs_type0.ps gs_dbt_e.ps gs_sym_e.ps quit.ps Fontmap \
uglyr.gsf bdftops.ps decrypt.ps font2c.ps impath.ps landscap.ps \
level1.ps prfont.ps ps2ascii.ps ps2epsi.ps ps2image.ps pstoppm.ps\
showpage.ps type1ops.ps wrfont.ps ; \
do rm -f $(gsdatadir)/$$f ; done

for f in NEWS devices.doc drivers.doc fonts.doc hershey.doc \
history.doc humor.doc language.doc lib.doc make.doc ps2epsi.doc \
psfiles.doc readme.doc use.doc xfonts.doc ; \
do rm -f $(docdir)/$$f ; done

for f in ansi2knr.1 gs.1 ; do $(INSTALL_DATA) $$f $(mandir)/$$f ; done
for f in chess.ps cheq.ps colorcir.ps golfer.ps escher.ps \
snowflak.ps tiger.ps ;
do rm -f $(exdir)/$$f ; done

-rmdir $(bindir)
-rmdir $(datadir)
-rmdir $(gsdatadir)
-rmdir $(docdir)
-rmdir $(mandir)

5 February 2005 02:09

Chapter 9: Installation 135

-rmdir $(exdir)

More frequently, howev er, you can’t use this approach: the Makefile isn’t as easy to find, or
you have long since discarded the source tree. In this case, we’ll have to do it differently.
First, we find the directory where the executable gs, the main ghostscript program, is stored:

$ which gs
/opt/bin/gs

Then we look at the last modification timestamp of /opt/bin/gs:

$ ls -l /opt/bin/gs
-rwxrwxr-x 1 root wheel 3168884 Jun 18 14:29 /opt/bin/gs

This is to help us to know where to look in the next step: we list the directory /opt/bin sorted
by modification timestamp. It’s a lot easier to find what we’re looking for if we know the
date. If you don’t hav e which, or possibly even if you do, you can use the following script,
called wh:

for j in $*; do
for i in ‘echo $PATH|sed ’s/:/ /g’‘; do
if [-f $i/$j]; then
ls -l $i/$j

fi
done

done

wh searches the directories in the current environment variable PATH for a specific file and
lists all occurrences in the order in which they appear in PATH in ls -l format, so you could
also have entered:

$ wh gs
-rwxrwxr-x 1 root wheel 3168884 Jun 18 14:29 /opt/bin/gs

Once we know the date we are looking for, it’s easy to list the directory, page it through more
and find the time frame we are looking for.

$ ls -lt /opt/bin|more
total 51068
-rw------- 1 root bin 294912 Sep 6 15:08 trn.old
-rwxr-xr-x 1 grog lemis 106496 Sep 6 15:08 man
...skipping lots of stuff
-rw-rw-rw- 1 grog bin 370 Jun 21 17:24 prab˜
-rw-rw-rw- 1 grog bin 370 Jun 21 17:22 parb
-rw-rw-rw- 1 grog bin 196 Jun 21 17:22 parb˜
-rwxrwxrwx 1 grog wheel 469 Jun 18 15:19 tep
-rwxrwxr-x 1 root wheel 52 Jun 18 14:29 font2c
-rwxrwxr-x 1 root wheel 807 Jun 18 14:29 ps2epsi
-rwxrwxr-x 1 root wheel 35 Jun 18 14:29 bdftops
-rwxrwxr-x 1 root wheel 563 Jun 18 14:29 ps2ascii
-rwxrwxr-x 1 root wheel 50 Jun 18 14:29 gslp
-rwxrwxr-x 1 root wheel 3168884 Jun 18 14:29 gs
-rwxrwxr-x 1 root wheel 53 Jun 18 14:29 gsdj
-rwxrwxr-x 1 root wheel 51 Jun 18 14:29 gsbj

5 February 2005 02:09

136

-rwxrwxr-x 1 root wheel 18 Jun 18 14:29 gsnd
-rwxrwxr-x 1 root wheel 54 Jun 18 14:29 gslj
-rwxr-xr-x 1 root bin 81165 Jun 18 12:41 faxaddmodem
-r-xr-xr-x 1 bin bin 249856 Jun 17 17:18 faxinfo
-r-xr-xr-x 1 bin bin 106496 Jun 17 15:50 dialtest
...more stuff follows

It’s easy to recognize the programs in this format: they were all installed in the same minute,
and the next older file (faxaddmodem) is more than 90 minutes older, the next newer file (tep)
is 50 minutes newer. The files we want to remove are, in sequence, font2c, ps2epsi, bdftops,
ps2ascii, gslp, gs, gsdj, gsbj, gsnd and gslj.

We’re not done yet, of course: ghostscript also installs a lot of fonts and PostScript files, as we
saw in the Makefile. How do we find and remove them? It helps, of course, to have the Make-
file, from which we can see that the files are installed in the directories /opt/bin,
/opt/lib/ghostscript and /opt/man/man1 (see the Makefile excerpt on page 133). If you don’t
have the Makefile, all is not lost, but things get a little more complicated. You can search the
complete directory tree for files modified between Jun 18 14:00 and Jun 18 14:59 with:

$ find /opt -follow -type f -print|xargs ls -l|grep "Jun 18 14:"
-rwxrwxr-x 1 root wheel 35 Jun 18 14:29 /opt/bin/bdftops
...etc
-rw-rw-r-- 1 root wheel 910 Jun 18 14:29 /opt/man/man1/ansi2knr.1
-rw-rw-r-- 1 root wheel 10005 Jun 18 14:29 /opt/man/man1/gs.1
-rw-rw-r-- 1 root wheel 11272 Jun 18 14:29 /opt/lib/ghostscript/Fontmap
-rw-rw-r-- 1 root wheel 22789 Jun 18 14:29 /opt/lib/ghostscript/bdftops.ps
-rw-rw-r-- 1 root wheel 295 Jun 18 14:29 /opt/lib/ghostscript/decrypt.ps
-rw-rw-r-- 1 root wheel 74791 Jun 18 14:29 /opt/lib/ghostscript/doc/NEWS
-rw-rw-r-- 1 root wheel 13974 Jun 18 14:29 /opt/lib/ghostscript/doc/devices.doc
...many more files

There are a couple of points to note here:

• We used GNU find, which uses the -follow option to follow symbolic links. If your
/opt hierarchy contains symbolic links, find would otherwise not search the subdirecto-
ries. Other versions of find may require different options.

• You can’t use ls -lR here because ls -lR does not show the full pathnames: you would find
the files, but the name at the end of the line would just be the name of the file, and you
wouldn’t know the name of the directory.

• If the file is more than six months old, ls -l will list it in the form

-rwxrwxrwx 1 grog wheel 22 Feb 10 1994 xyzzy

This may be enough to differentiate between the files, but it’s less certain. GNU ls (in
the fileutils package) includes a option -−full-time (note the two leading hyphens).
This will always print the full time, regardless of the age of the file. With this option, the
file above will list as:

$ ls --full-time -l xyzzy
-rwxrwxrwx 1 grog wheel 22 Thu Feb 10 16:00:24 1994 xyzzy

5 February 2005 02:09

Chapter 9: Installation 137

Removing too much
None of these methods for removing installed software can handle one remaining serious
problem: some programs install a modified version of a standard program, and if you remove
the package, you remove all trace of this standard program. For example, GNU tar and GNU
cpio both include the remote tape protocol program rmt. If you install both of these packages,
and then decide to remove cpio, tar will not work properly either. It’s not always enough to
keep track of which packages depend on which programs: in some cases, a modified version
of a program is installed by a package, and if you remove the package, you need to re-install
the old version of the program.

Keeping track of installed software
All the methods we’ve seen so far smell strongly of kludge:

• They inv olve significant manual intervention, which is prone to error.

• The remove or uninstall targets of a Makefile are based on names not contents. If you
stop using a package, and install a new one with some names that overlap the names of
the old package, and then remove the old package, the files from your new package will
go too.

• The manual method based on the dates does not discover configuration or data files—if
you remove net news from a system, you will have to remember to remove the news
spool area as well, because that certainly won’t hav e the same modification timestamp as
the installed software.

• It’s almost impossible to safely and automatically remove modifications to environment
variables in .cshrc and .profile files.

We can come closer to our goal if we have a method to keep track of the files that were actu-
ally installed. This requires the maintenance of some kind of database with information about
the relationship between packages and files. Ideally,

• It would contain a list of the files installed, including their sizes and modification time-
stamps.

• It would prevent modification to the package except by well-defined procedures.

• It would contain a list of the files that were modified, including diffs to be able to reverse
them.

• It would keep track of the modifications to the package as time went by: which files were
created by the package, which files were modified.

This is an ideal, but the System V.4 pkgadd system comes reasonably close, and the concept is
simple enough that we can represent the most important features as shell scripts. We’ll look
at it in the next section.

5 February 2005 02:09

138

System V pkgadd
UNIX System V.4 is supplied as a number of binary packages*—you can choose which to
install and which not to install. You can even choose whether or not to install such seemingly
essential components as networking support and man pages.

Packages can be created in two formats: stream format for installation from serial data media
like tapes, and file system format for installation from file systems. In many cases, such as
diskettes, either form may be used. The program pkgtrans transforms one format into the
other. In the following discussion, we’ll assume file system format.

The package tools offer a bewildering number of options, most of which are not very useful.
We’ll limit our discussion to standard cases: in particular, we won’t discuss classes and multi-
part packages. If you are using System V.4 and want to use other features, you should read
the documentation supplied with the system. In the following sections we’ll look at the indi-
vidual components of the packages.

pkginfo
The file pkginfo, in the root directory of the package, contains general information about the
package, some of which may be used to decide whether or not to install the package. For
example, the pkginfo file for an installable emacs package might look like:

ARCH=i386 the architecture for which the package is intended
PKG=emacs the name of the package
VERSION=19.22 the version number
NAME=Emacs text editor a brief description
CATEGORY=utilities the kind of package
CLASSES=none class information
VENDOR=Free Software Foundation the name of the owner
HOTLINE=LEMIS, +49-6637-919123, Fax +49-6637-919122 who to call if you have trouble
EMAIL=lemis@lemis.de mail for HOTLINE

This information is displayed by pkgadd as information to the user before installation.

pkgmap
The file pkgmap is also in the root directory of the package. It contains information about the
destination of the individual files. For example, from the same emacs package,

: 1 37986
1 d none /opt 0755 bin bin
1 d none /opt/README 0755 bin bin
1 f none /opt/README/emacs-19.22 0644 root sys 1518 59165 760094611
1 d none /opt/bin 0755 bin bin
1 f none /opt/bin/emacs 0755 root sys 1452488 11331 760577316
1 f none /opt/bin/etags 0755 root sys 37200 20417 760577318

* As used here, the term package is a collection of precompiled programs and data and information nec-
essary to install them—this isn’t the same thing as the kind of package we have been talking about in
the rest of this book.

5 February 2005 02:09

Chapter 9: Installation 139

1 d none /opt/info 0755 bin bin
1 f none /opt/info/cl.info 0644 root sys 3019 62141 760094526
1 f none /opt/info/dir 0644 root sys 2847 23009 760559075
1 f none /opt/info/emacs 0644 root sys 10616 65512 760094528
1 d none /opt/lib 0755 bin bin
1 d none /opt/lib/emacs 0755 bin bin
1 d none /opt/lib/emacs/19.22 0755 bin bin
1 d none /opt/lib/emacs/19.22/etc 0755 bin bin
1 f none /opt/lib/emacs/19.22/etc/3B-MAXMEM 0644 root sys 1913 18744 574746032

The first line specifies that the package consists of a single part, and that it consists of 37986
512 byte blocks. The other lines describe files or directories:

• The first parameter is the part to which the file belongs.

• The next parameter specifies whether the file is a plain file (f), a directory (d), a link (l)
or a symbolic link (s). A number of other abbreviations are also used.

• The next parameter is the class of the file. Like most packages, this package does not
use classes, so the class is always set to none.

• The following four parameters specify the name of the installed object, its permissions,
the owner and the group.

• After this come the size of the file, a checksum and the modification time in naked
time_t format. The checksum ensures that the package is relatively protected against
data corruption or deliberate modification.

Package subdirectories
In addition to the files in the main directory, packages contain two subdirectories root and
install:

• root contains the files that are to be installed. All the files described in pkgmap are
present under the same names in root (for example, /opt/bin/emacs is called
root/opt/bin/emacs in the package).

• The file install/copyright contains a brief copyright notice that is displayed on installa-
tion. pkgadd does not wait for you to read this, so it should really be brief.

• Optionally, there may be scripts with names like install/preinstall and install/postinstall
which are executed before and after copying the files, respectively. preinstall might, for
example, set up the directory structure /opt if it does not already exist. postinstall might
update .cshrc and .profile files. In some cases, it may need to do more. For example, the
ISO 9660 directory standard for CD-ROMs limits allows only eight nested directories (in
other words, the directory /a/b/c/d/e/f/g/h/i is nested too deeply). gcc on a CD-ROM
would violate this limitation, so some of the package has to be stored as a tar file, and the
postinstall script extracts it to the correct position.

5 February 2005 02:09

140

pkgadd
With this structure, adding a package is almost child’s play: you just have to enter

$ pkgadd emacs

Well, almost. The name emacs is the name of the package and not a file name. By default,
pkgadd expects to find it in /var/spool/pkg. If your package is elsewhere, you can’t tell
pkgadd simply by prepending the name—instead, you need to specify it with the -d option:

$ pkgadd -d /cdrom emacs

This will install emacs from the directory cdrom.

Removing packages
One really nice thing about the System V.4 package system is the ease with which you can
remove a package. Assuming that you have decided that vi is a better choice than emacs, or
you just don’t hav e the 19 MB that the emacs package takes up, you just have to type:

$ pkgrm emacs

and all the files will be removed.

Making installable packages
The discussion of pkgadd assumes that you already have an installable package. This is
appropriate for System V.4, but if you have just ported a software package, you first need to
create an installable binary package from it. This is the purpose of pkgmk. It takes a number
of input files, the most important of which is prototype: it describes which files should be
installed. It is almost identical in format to the pkgmap file we discussed above. For example,
the prototype file for the emacs example above looks like:

Prototype file created by /cdcopy/ETC/tools/mkmkpk on Wed Jan 19 18:24:41 WET 1994
i pkginfo
i preinstall
i postinstall
i copyright
Required directories
d none /opt 755 bin bin
d none /opt/bin 755 bin bin
d none /opt/README 755 bin bin
d none /opt/man 755 bin bin
d none /opt/lib 755 bin bin
d none /opt/lib/emacs 755 bin bin
d none /opt/lib/emacs/19.22 755 bin bin
d none /opt/lib/emacs/19.22/etc 755 bin bin
d none /opt/info 755 bin bin
Required files
f none /opt/lib/emacs/19.22/etc/3B-MAXMEM 644 root sys
f none /opt/bin/emacs 755 root sys

5 February 2005 02:09

Chapter 9: Installation 141

f none /opt/info/emacs 644 root sys
f none /opt/info/dir 644 root sys

This looks rather different from pkgmap:

• There are comment lines starting with #. The first line indicates that this file was created
by a script. Later on we’ll see the kind of function mkmkpk might perform.

• The first column (part number) and the last three columns (size, checksum and modifica-
tion timestamp) are missing.

• Some lines start with the keyletter i. These describe installation files: we recognize the
names from the discussion above. pkgmk copies these files into the directory tree as dis-
cussed above. What is not so immediately obvious is that pkginfo is placed in the main
directory of the package, and the others are placed in the subdirectory install. It is also
not obvious that some of these files are required: if they are not specified, pkgmk dies.

Making a prototype file
There’s still a gap between the original make install and building an installable package. We
need a prototype file, but make install just installs software. The packaging tools include a
program called pkgproto that purports to build prototype files. It searches a directory recur-
sively and creates prototype entries for every file it finds. If you have just installed emacs, say,
in your /opt directory, pkgproto will give you a prototype including every file in /opt, includ-
ing all the packages which are already installed there—not what you want. There are a num-
ber of alternatives to solve this problem:

• You can install into a different directory. pkgproto supports this idea: you can invoke it
with

$ pkgproto /tmp-opt=/opt

which will tell it to search the directory /tmp-opt and generate entries for /opt. The dis-
advantage of this approach is that you may end up building programs with the path /tmp-
opt hard coded into the executables, and though it may test just fine on your system, the
executable files will not work on the target system—definitely a situation to avoid.

• You rename /opt temporarily and install emacs in a new directory, which you can then
rename. This virtually requires you to be the only user on the system.

• Before installing emacs, you create a dummy file stamp-emacs just about anywhere on
the system. Then you install emacs, and make a list of the files you have just installed:

$ find /opt -follow -cnewer stamp-emacs -type f -print | xargs ls -l >info

This requires you to be the only person on the system who can write to the directory at
the time. This is more not as simple as you might think. Mail and news can come in
ev en if nobody else is using the system. Of course, they won’t usually write in the same
directories that you’re looking in. Nevertheless, you should be prepared for a few sur-
prises. For example, you might find a file like this in your list:

5 February 2005 02:09

142

/opt/lib/emacs/lock/!cdcopy!SOURCE!Core!glibc-1.07!version.c

This is an emacs lock file: it is created by emacs when somebody modifies a buffer (in
this case, a file called /cdcopy/SOURCE/Core/glibc-1.07/version.c: emacs replaces the
slashes in the file name by exclamation marks), and causes another emacs to warn the
user before it, too, tries to modify the same file. It contains the pid of the emacs process
that has the modified buffer. Obviously you don’t want to include this file in your instal-
lable package.

Once you have tidied up your list of files, you can generate a prototype file with the aid
of a shell script or an editor.

Running pkgmk
Once you have a prototype file, you’re nearly home. All you have to do is run pkgmk. We run
into terminology problems here: throughout this book, we have been using the term package
to refer to the software we are building. More properly, this is the software package. pkgmk
refers to its output as a package too—here, we’ll refer to it as the installable package.

Unfortunately, pkgmk handles some pathnames strangely. You can read the man page (prefer-
ably several times), or use this method, which works:

• Before building the installable package, change to the root directory of the software
package.

• Ignore path specifications in the prototype file and specify the root path as the root file
system: -r /.

• Specify the base directory as the root directory of the package: since that’s the directory
we’re in, just add -b ‘pwd‘.

• Choose to overwrite any existing package: -o.

• Specify the destination path explicitly: -d /usr/pkg. pkgmk creates packages will as
subdirectories in this directory: the package gcc would create a directory hierarchy
/usr/pkg/gcc.

The resultant call doesn’t change from one package to the next: it is

pkgmk -r / -b ‘pwd‘ -o -d /usr/pkg

There is a whole lot more to using pkgmk, of course, but if you have pkgmk, you will also
have the man pages, and that’s the best source of further information.

5 February 2005 02:09

