5 February 2005 02:09

Preface

This book is about porting software between UNIX platforms, the process of taking a soft-
ware package in source form and installing it on your machine. This doesn’t sound like a big
deal at first, but there’s more to it than meets the eye: you need to know how to get the soft-
ware, how to unpack what you get, how to modify the package so that it will compile on your
system, how to compile and install the software on your system, and how to deal with prob-
lems if they crop up.

Nevertheless, it doesn’t involve anything that hasn’t already been done to death in hundreds of
well-written books: you can find out about getting software from the Internet in The Whole
Internet User’s Guide and Catalog, by Ed Krol. Unpacking software is basically a matter of
using standard tools described in dozens of good introductory textbooks. Compiling pro-
grams is so simple that most C textbooks deal with it in passing. Installation is just a matter
of copying software to where you want it. Programming is the meat of lots of books on UNIX
programming, for example Advanced Programming in the UNIX environment by Richard
Stevens,

So why yet another book?

Most textbooks give you an idealized view of programming: “This is the way to do it” (“and it
works™). They pay little attention to the ways things can go wrong. UNIX is famed for cryp-
tic or misleading error messages, but not many books go into the details of why they appear or
what they really mean. Even experienced programmers frequently give up when trying to port
software. The probable advantage of completing the port just isn’t worth effort that it takes.

In this book, I’d like to reduce that effort.

If you take all the books I just mentioned, you’ll have to find about 3 feet of shelf space to
hold them. They’re all good, but they contain stuff that you don’t really want to know about
right now (in fact, you’re probably not sure if you ever want to know all of it). Maybe you
have this pressing requirement to get this debugger package, or maybe you finally want to get
the latest version of nethack up and running, complete with X11 support, and the last thing
you want to do on the way is go through those three feet of paper.

That’s where this book comes in. It covers all issues of porting, from finding the software
through porting and testing up to the final installation, in the sequence in which you perform
them. It goes into a lot of detail comparing the features of many different UNIX systems, and
offers suggestions about how to emulate features not available on the platform to which you

5 February 2005 02:09

are porting. It views the problems from a practical rather than from a theoretical perspective.
You probably won’t know any more after reading it than you would after reading the in-depth
books, but I hope that you’ll find the approach more related to your immediate problems.

Audience

This book is intended for anybody who has to take other people’s software and compile it on a
UNIX platform. It should be of particular interest to you if you’re:

e Asoftware developer porting software to a new platform.
e Asystem administrator collecting software products for your system.
« A computer hobbyist collecting software off the Internet.

Whatever your interest, | expect that you’ll know UNIX basics. If you’re a real newcomer,
you might like to refer to Learning the UNIX Operating System, by Grace Todino, John
Strang and Jerry Peek. In addition, UNIX in a Nutshell, available in BSD and System V
flavours, includes a lot of reference material which I have not repeated in this book.

The less you already know, the more use this book is going to be to you, of course. Neverthe-
less, even if you’re an experienced programmer, you should find a number of tricks to make
life easier.

Organization

One of the big problems in porting software is that you need to know everything first. While
writing this book | had quite a problem deciding the order in which to present the material. In
the end, | took a two-pronged approach, and divided this book into two major parts:

1. Inthe first part, we’ll look at the stages through which a typical port passes: getting the
software, extracting the source archives, configuring the package, compiling the soft-
ware, testing the results, and installing the completed package.

2. In the second part, we’ll take a look at the differences between different flavours of
UNIX, how they can make life hard for you, and how we can solve the problems.

Operating System Versions

Nearly everything in this book is related to one version or another of UNIX," and a lot of the
text only makes sense in a UNIX context. Nevertheless, it should be of some use to users of
other operating systems that use the C programming language and UNIX tools such as make.

As in any book about UNIX, it’s difficult to give complete coverage to all flavours. The
examples in this book were made with six different hardware/software platforms:

* UNIX is, of course, a registered trademark of its current owner. In this context, | am referring to any
operating system that presents a UNIX-like interface to the user and the programmer.

5 February 2005 02:09

Preface i

* SCO XENIX/386 on an Intel 386 architecture (version 2.3.2).

e UNIX System V.3 on an Intel 386 architecture (Interactive UNIX/386 version 2.2).
e UNIX System V.4.2 on an Intel 386 architecture (Consensys V4.2).

« BSD onan Intel 386 architecture (BSD/386" 1.1 and FreeBSD).

e SunOS on a Sparc architecture (SunOS 4.1.3).

e IRIX 5.3 0nan SGI Indy Workstation (mainly System V.4).

This looks like a strong bias towards Intel architectures. However, most problems are more
related to the software platform than the hardware platform. The Intel platform is unique in
offering almost every flavour of UNIX that is currently available, and it's easier to compare
them if the hardware is invariant. | believe these examples to be representative of what you
might fi nd on other hardware.

The big difference in UNIX favours is certainly between UNIX System V.3 and BSD, while
System V.4 represents the logical sum of both of them. At a more detailled level, every sys-
tem has its own peculiarities. there is hardly a system available which doesn't have its own
quirks. These quirks turn out to be the biggest problem that you will have to fi ght when port-
ing software. Even software that ported just fi ne on the previous release of your operating
system may suddenly turn into an error message generator.

Conventions used in this book

This book uses the following conventions:

Bold is used for the names of keys on the keyboard. We'll see more about this in the next sec-
tion.

Italic is used for the names of UNIX utilities, directories and fi lenames, and to emphasize new
terms and concepts when they are fi rst introduced.

Gonstant Wdt h is used in examples to show the contents of fi les, the output from com-
mands, program variables, actual values of keywords, for the names of Usenet newsgroups,

and in the text to represent commands.

Constant Italic isusedin examplesto show variables for which context-specifi ¢ substitu-
tions should be made. For example, the variable fi | enane would be replaced by an actual

fi lename. In addition it is used for comments in code examples.

Gonstant Bol d is used in examples to show commands or text that would be typed in liter-
aly by the user.

Most examples assume the use of the Bourne shell or one of its descendents such as the Korn
Shell, or the Free Software Foundation’s bash. Normally the prompt will be shown as the
default $, unless it is an operation that requires the superuser, in which case it will be shown
as#. When continuation lines are used, the prompt will be the standard >. In cases where the
command wouldn’t work with the C shell, | present an alternative. In the C shell examples,
the prompt is the default %

* Later versions of this operating system are called BSD/OS.

5 February 2005 02:09

I have tried to make the examples in this book as close to practice as possible, and most are
from real-life sources. A book is not a monitor, however, and displays that look acceptable
(well, recognizable) on a monitor can sometimes look really bad in print. In particular, the
utilities used in porting sometimes print out “lines” of several hundred characters. | have tried
to modify such output in the examples so that it fits on the page. For similar reasons, | have
modified the line breaks in some literally quoted texts, and have occasionally squeezed things
like long directory listings.

Describing the keyboard

It’s surprising how many confusing terms exist to describe individual keys on the keyboard.
My favourite is the any key (‘Press any key to continue”). We won’t be using the any
key in this book, but there are a number of other keys whose names need understanding:

+ The Enter or Return key. I'll call this RETURN.

+ Control characters (characters produced by holding down the CTRL key and pressing a
normal keyboard key at the same time). These characters are frequently echoed on the
screen as a caret (7) followed by the character entered. In keeping with other Nutshell
books, I’ll write control-D as CTRL-D.

+ The ALT key, which emacs afficionados call a META key, works like a second CTRL
key, but generates a different set of characters. These are sometimes abbreviated by pre-
fixing the character with a tilde (7) or the characters A-. Although these are useful abbre-
viations, they can be confusing, so I’ll spell these out as CTRL-X and ALT-D, etc.

* NL is the new line character. In ASCII, it is CTRL-J, but UNIX systems generate it
when you press the RETURN key.

+ CR is the carriage return character, in ASCII CTRL-M. Most systems generate it with
the RETURN key.

« HT is the ASCII horizontal tab character, CTRL-1. Most systems generate it when the
TAB key is pressed.

Terminology

Any technical book uses jargon and technical terms that are not generally known. I’ve tried to
recognize the ones used in this book and describe them when they occur. Apart from this, |
will be particularly pedantic about the way | use the following terms in this book:

program Everybody knows what a program is: a series of instructions to the computer
which, when executed, cause a specific action to take place. Source files don’t fit
this category: a source program (a term you won’t find again in this book) is
really a program source (a file that you can, under the correct circumstances, use
to create a program). A program may, however, be interpreted, so a shell script
may qualify as a program. So may something like an emacs macro, whether byte
compiled or not (since emacs can interpret uncompiled macros directly).

5 February 2005 02:09

Preface \%

package A package is a collection of software maintained in a source tree. At various
stages in the build process, it will include

« source files: files that are part of the distribution.

« auxiliary files, like configuration information and object files that are not
part of the source distribution and will not be installed.

« installable files: files that will be used after the build process is complete.
These will normally be copied outside the source tree so that the source tree
can be removed, if necessary.

Some software does not require any conversion: you can just install the sources
straight out of the box. We won’t argue whether this counts as a package. It cer-
tainly shouldn’t give you any porting headaches.
We’ll use two other terms as well: building and porting. It’s difficult to come up with a hard-
and-fast distinction between the two—we’ll discuss the terms in Chapter 1, Introduction.

Acknowledgements

Without software developers all over the world, there would be nothing to write about. In par-
ticular, the Free Software Foundation and the Computer Sciences Research Group in Berkeley
(now defunct) have given rise to an incredible quantity of freely available software. Special
thanks go to the reviewers Larry Campbell and Matt Welsh, and particularly to James Cox,
Jerry Dunham, and J6rg Micheel for their encouragement and meticulous criticism of what
initially was just trying to be a book. Thanks also to Clive King of the University of Aberyst-
wyth for notes on data types and alignment, Steve Hiebert with valuable information about
HP-UX, and Henry Spencer and Jeffrey Friedl for help with regular expressions.

Finally, I can’t finish this without mentioning Mike Loukides and Andy Oram at O’Reilly and

Associates, who gently persuaded me to write a book about porting, rather than just present-
ing the reader with a brain dump.

