
Signals

Signals are another area in UNIX where the initial implementation was inadequate, and multi-
ple implementations have dev eloped in the course of the time. If you try to port software
which assumes the presence of one implementation, and your system doesn’t support this
implementation, you could be in for a significant amount of rewriting. The situation isn’t
improved by the fact that there are a number of subtle differences between the various imple-
mentations and even between different systems with the same implementation. In this chap-
ter, we’ll look at those aspects of signal implementation which are of interest to porting.

There have been four different implementations in the course of UNIX history:

• The Seventh Edition had so-called unreliable signals. and handled them with the signal
system call. System V still supplies them with the signal system call. As we will see
on page 188, the use of the signal function does not automatically imply unreliable sig-
nals.

• 4.2BSD introduced the first implementation of reliable signals. It uses the functions
signal, sigvec, sigblock, sigsetmask and sigpause.

• System V introduced an alternative implementation of reliable signals. It uses the func-
tions sigset, sighold, sigrelse, sigignore and sigpause.

• Finally, POSIX.1 defined a third implementation of reliable signals. These are based on
the BSD signals and use the functions sigaction, sigprocmask, sigpending and
sigsuspend.

Most people think of signals as the way the operating system or an outside user stops a pro-
gram that is misbehaving. More generally, they are a means to cause execution of functions
out of sequence, and have thus been called software interrupts. Hardware interrupts cause the
system to interrupt normal processing and perform a specific sequence of instructions. Sig-
nals do the same thing in software: when a process receives a signal, the kernel simulates a
call to a pre-defined routine.* The routine, called a signal handler, handles the signal and pos-
sibly returns to the “caller”. It would be a significant overhead for every program to supply a

* This is not a real call: when the kernel delivers the signal, it modifies the process stack and registers so
that it looks as if the signal handler has just been called. When the process continues executing, it is in
the signal handler. Nobody ever really calls the signal handler.

179

5 February 2005 02:09

180

signal handler for every conceivable signal, so the kernel supplies two default methods of han-
dling the signal. The choice of a signal handler or one of the two defaults is called the dispo-
sition of the signal. Initially, each signal’s disposition is set either to ignore the signal or to
terminate the process if the signal occurs. In some cases, the system writes a core file, a copy
of the state of the process, when the process is terminated.

Signals may come from a number of different sources:

• External events. For example, pressing CTRL-C or DEL on most systems causes the ter-
minal driver to send a SIGINT signal to the foreground process group of the terminal.

• Internal events. For example, alarm causes a SIGALRM signal after the specified time-
out.

• Hardware interrupts. For example, if a process attempts to access a page that is not part
of its address space, it will receive a SIGSEGV or SIGBUS signal.

• As the result of another process calling kill.

In this chapter, we’ll consider which signals are supported by which operating systems, and
how signals are implemented in different operating systems.

Supported signals
The Seventh Edition had 15 signals, and current implementations allow up to 31, though not
all are used. In the course of time, the meanings have also diverged somewhat. Table 13-1
gives an overview of which signals are present in which implementations.

Table 13−1: Signal usage

Signal V S S B P action purpose
7 V V S O

R R D S
3 4 I

X

SIGABRT • • • core abort call2

SIGALRM • • • • • kill real-time timer expired
SIGBUS • • • • core bus error
SIGCHLD • • • ignore child status has changed
SIGCLD • • ignore child status has changed
SIGCONT • • • • ignore continue after stop
SIGEMT • • • • core emulate instruction executed
SIGFPE • • • • • core floating-point exception
SIGHUP • • • • • kill line hangup
SIGILL • • • • • core illegal instruction
SIGINFO • • ignore status request from keyboard

5 February 2005 02:09

Chapter 13: Signals 181

Table 13−1: Signal usage (continued)

Signal V S S B P action purpose
7 V V S O

R R D S
3 4 I

X

SIGINT • • • • • kill interrupt program (usually from termi-
nal driver)

SIGIO • • ignore I/O completion outstanding1

SIGIOT • • core IOT instruction2

SIGKILL • • • • • kill kill program4

SIGPIPE • • • • • kill write on a pipe with no reader
SIGPROF • • kill profiling timer alarm
SIGPWR • • • ignore power fail/restart
SIGQUIT • • • • • core quit program (usually from terminal

driver)
SIGSEGV • • • • • core segmentation violation
SIGSTOP • • • • stop stop4

SIGSYS • • • • core invalid system call
SIGTERM • • • • • kill software termination signal
SIGTRAP • • • • core trace trap
SIGTSTP • • • • stop stop signal generated from keyboard
SIGTTIN • • • • stop background read from control terminal
SIGTTOU • • • • stop background write to control terminal
SIGURG • • ignore urgent condition present on socket
SIGUSR1 • • • • kill User defined signal 1
SIGUSR2 • • • • kill User defined signal 2
SIGVTALRM • kill virtual time alarm
SIGWINCH •3 • • ignore Window size change
SIGXCPU • • • core cpu time limit exceeded
SIGXFSZ • • • core file size limit exceeded

1 Sometimes called SIGPOLL in System V.
2 SIGIOT and SIGABRT usually have the same signal number.
3 Not available in all versions.
4 This signal cannot be caught or ignored.

Unreliable and reliable signals
The terms unreliable signals and reliable signals need explaining. The problem relates to
what happens when a signal handler is active: if another signal occurs during this time, and it
is allowed to be delivered to the process, the signal handler will be entered again. Now it’s
not difficult to write reentrant* signal handlers—in fact, it’s a very good idea, because it

* A reentrant function is one which can be called by functions which it has called—in other words, it

5 February 2005 02:09

182

means that you can use one signal handler to handle multiple signals—but if the same signal
reoccurs before the signal handler has finished handling the previous instance, it could happen
again and again, and the result can be a stack overflow with repeated signal handler calls.

The original signal implementation, which we call unreliable signals, had a simplistic attitude
to this problem: it reset the signal dispostion to the default, which meant that if another signal
occurred while the previous one was being processed, the system would either ignore the sig-
nal (so it would lose the signal) or terminate the process (which is probably not what you
want). It was up to the signal handler to reinstate the signal disposition, and this couldn’t be
done immediately without running the risk of stack overflow.

All newer signal implementations provide so-called reliable signals. The signal disposition is
not changed on entry to the signal handler, but a new signal will not be delivered until the sig-
nal handler returns. This concept is called blocking the signal: the system notes that the signal
is pending, but doesn’t deliver it until it is unblocked.

There are a number of things that the term reliable signal does not mean:

• It doesn’t imply that the underlying kernel implementation is bug-free. Depending on
the implementation, there is still a slight chance that the kernel will lose the signal.

• It doesn’t imply that a signal cannot get lost. The method used to queue signals is to set
a bit in a bit mask. If multiple signals of the same kind occur while the signal is blocked,
only one will be delivered.

• It doesn’t imply that you don’t need reentrant signal handlers. The system blocks only
the signal that is currently being handled. If you have a single handler for multiple sig-
nals, it will need to be reentrant. In particular, this means that you should at least be very
careful with static variables and preferably use few local variables (since they take up
stack space). You should also be careful with the functions you call—we’ll take another
look at this on page 187.

The semantics of each implementation differ in subtle ways, so changing to a different set of
signal calls involves more than just changing the function calls and parameters. Here’s a brief
overview of the differences you might encounter:

• With unreliable signals, after a signal occurs, the signal disposition is reset to default, so
the signal handler must reinstate itself before returning. If a second signal occurs before
the disposition is reinstated, the process may be terminated (if the default disposition is
terminate) or the signal may be completely forgotten (if the default disposition is ignore).

• The names and purposes of the signals differ significantly from one implementation to
the next. See Table 13-2 for an overview.

• In modern implementations, the function call signal varies in its meaning. In System
V, it uses the old, unreliable Seventh Edition signal semantics, while in BSD it is an
interface to the sigaction system call, which provides reliable signals. If you’re port-
ing BSD signal to System V, you should modify the code use sigaction instead.

can be entered again before it has returned. This places a number of restrictions on the function. In par-
ticular, it cannot rely on external values, and may not use static storage.

5 February 2005 02:09

Chapter 13: Signals 183

• The first parameter to a signal handler is always the number of the signal. Both System
V.4 and BSD can supply additional parameters to the signal handlers. We’ll look at the
additional parameters in more detail on page 183.

• The handling of interrupted system calls varies from one system to the next. We’ll look
into this topic in more detail on page 186.

• The difference between the signals SIGBUS and SIGSEGV is purely historical: it relates to
the PDP-11 hardware interrupt that detected the problem. In modern systems, it depends
on the whim of the implementor when you get which signal. POSIX.1 defines only
SIGSEGV, but this doesn’t help much if the processor generates SIGBUS anyway. It’s best
to treat them as being equivalent.

• SIGCLD is a System V version of SIGCHLD. A number of hairy problems can arise with
SIGCLD; we’ll look at them in more detail on page 186.

• SIGILL was generated by the abort function in early BSD implementations. Early Sys-
tem V used SIGIOT instead. All modern implementations generate SIGABRT. Fre-
quently you’ll find that these two signals are in fact defined to have the same number; if
you run into troubles where one or the other is undefined, you could possibly do just this:

#define SIGIOT SIGABRT

Signal handlers
Modern versions of UNIX define signal handlers to be of type

void (*signal (int signum, void (*handler))) (int hsignum)

This is probably one of the most confusing definitions you are likely to come across. To
understand it, it helps to remember that we are talking about two functions:

• The signal handler, called handler in this declaration, takes an int parameter hsignum
and returns a void pointer to the old signal handler function, which is of the same type
as itself.

• The function signal, which takes two parameters. The first is signum, the number of
the signal to be handled, of type int, and the second is a pointer to a signal handler func-
tion handler. It also returns a void pointer to a signal handler function.

In fact, in many implementations the signal handler function takes additional parameters, and
you may find that your program takes advantage of them. We’ll look at these in the following
sections.

System V.4 signal handlers
The System V.4 signal handler interface offers additional functionality in certain circum-
stances: if you use the sigaction interface and you set the flag SA_SIGINFO in sa_flags,
the signal handler is invoked as if it were defined

5 February 2005 02:09

184

void handler (int signum,
struct siginfo *info,
struct ucontext *context);

siginfo is an enormous structure, defined in /usr/include/siginfo.h, which starts with

struct siginfo
{
int si_signo; /* signal from signal.h */
int si_code; /* code from above */
int si_errno; /* error from errno.h */

... more stuff, including space for further growth
}

ucontext is defined in /usr/include/ucontext.h and contains information about the user con-
text at the time of the signal application. It includes the following fields:

• uc_sigmask is the blocked signal mask.

• us_stack points to the top of stack at the time the signal was delivered.

• uc_mcontext contains the processor registers and any implementation specific context
data.

For example, assume you had set the signal handler for SIGFPE with the call in Example 13-1.

Example 13−1:

void bombout_handler (int signum,
struct siginfo *info,
struct ucontext *context);

sigset_t bombout_mask;
struct sigaction bad_error = {&bombout_handler, handler for the signal

&bombout_mask, signals to mask
SA_SIGINFO}; we want additional info

sigemptyset (&bombout_mask); no signals in mask
sigaction (SIGFPE, &bad_error, NULL);

On receipt of a SIGFPE,

• signal will be set to SIGFPE.

• info->si_signo will also be set to SIGFPE.

• On an i386 machine, info->si_code might be, for example, FPE_INTDIV (indicating
an integer divide by zero) or FPE_FLTUND (indicating floating point underflow).

• The value of info->si_errno can’t be relied on to have any particular value.

• context->uc_sigmask contains the current signal mask.

• context->uc_stack will point to the stack in use at the time the signal was delivered.

5 February 2005 02:09

Chapter 13: Signals 185

• context->uc_mcontext will contain the contents of the processor registers at the time
of the interrupt. This can be useful for debugging.

BSD signal handlers
BSD signal handlers do not use the flag SA_SIGINFO for sa_flags. Signal handlers always
receive three parameters:

void handler (int signum, int code, struct sigcontext *context);

code gives additional information about certain signals—you can find this information in the
header file /usr/include/machine/trap.h. This file also contains information about how hard-
ware interrupts are mapped to signals. context is hardware-dependent context information
that can be used to restore process state under some circumstances. For example, for a Sparc
architecture it is defined as

struct sigcontext
{
int sc_onstack; /* sigstack state to restore */
int sc_mask; /* signal mask to restore */
/* begin machine dependent portion */
int sc_sp; /* %sp to restore */
int sc_pc; /* pc to restore */
int sc_npc; /* npc to restore */
int sc_psr; /* psr to restore */
int sc_g1; /* %g1 to restore */
int sc_o0; /* %o0 to restore */
};

The program of Example 13-1 won’t compile under BSD, since BSD doesn’t define SA_SIG-
INFO, and the parameters for bombout_handler are different. We need to modify it a little:

void bombout_handler (int signum,
int code,
struct sigcontext *context);

sigset_t bombout_mask;
struct sigaction bad_error = {&bombout_handler, handler for the signal

&bombout_mask, signals to mask
0};

... the rest stays the same

If you enter this signal handler because of a SIGFPE, you might find:

• signum will be set to SIGFPE.

• On an i386 machine, code might be, for example, FPE_INTOVF_TRAP (indicating an
integer divide by zero) or FPE_FLTUND_TRAP (indicating floating point underflow).

• The value of sc_onstack would be the previous sigstack state.

• context->sc_mask contains the current blocked signal mask, like context->uc_sig-
mask in the System V.4 example.

5 February 2005 02:09

186

• The rest of the context structure shows the same kind of register information that Sys-
tem V.4 stores in context->uc_mcontext.

SIGCLD and SIGCHLD
System V treats the death of a child differently from other implementations: The System V
signal SIGCLD differs from the BSD and POSIX.1 signal SIGCHLD and from all other signals
by remaining active until you call wait. This can cause infinite recursion in the signal han-
dler if you reinstate the signal via signal or sigset before calling wait. If you use the
POSIX.1 sigaction call, you don’t hav e to worry about this problem.

When a child dies, it becomes a zombie. As all voodoo fans know, a zombie is one of the Liv-
ing Dead, neither alive nor dead. In UNIX terminology, when a child process dies it becomes
a zombie: the text and data segments are freed, and the files are closed, but the process table
entry and some other information remain until it is exorcized by the parent process, which is
done by calling wait. By default, System V ignores SIGCLD and SIGCHLD, but the system
creates zombies, so you can find out about child status by calling wait. If, however, you
change the default to explicitly ignore the signal, the system ignores SIGCHLD and SIGCLD,
but it also no longer creates zombie processes. If you set the disposition of SIGCHLD and
SIGCLD to ignore, but you call wait anyway, it waits until all child processes have termi-
nated, and then returns -1 (error), with errno set to ECHILD. You can achieve the same effect
with sigaction by specifying the SA_NOCLDWAIT flag in sa_flags. There is no way to
achieve this behaviour in other versions of UNIX: if you find your ported program is collect-
ing zombies (which you will see with the ps program), it might be that the program uses this
feature to avoid having to call wait. If you experience this problem, you can solve it by
adding a signal handler for SIGCLD that just calls wait and returns.

The signal number for SIGCLD is the same as for SIGCHLD. The semantics depend on how
you enable it: if you enable it with signal, you get SIGCLD semantics (and unreliable sig-
nals), and if you enable it with sigaction you get SIGCHLD and reliable signals. Don’t rely
on this, however. Some versions of System V have special coding to ensure that a separate
SIGCLD signal is delivered for each child that dies.

Interrupted system calls
Traditional UNIX kernels differentiate between fast and slow system calls. Fast calls are han-
dled directly by the kernel, while slow calls require the cooperation of other processes or
device drivers. While the call is being executed, the calling process is suspended.

If a signal for a process occurs while the process is suspended, the behaviour depends both on
whether the call is fast or slow, and on the signal implementation. On traditional systems, if
the priority is numerically less than (of a higher priority than) the constant PZERO, the signal
is slow and remains pending until the priority rises above PZERO. Otherwise it is fast, and the
system call is interrupted. Typically, this means that disk and network operations are not
interrupted, since they run at a priority below PZERO, whereas terminal and serial line opera-
tions can be interrupted. Some newer systems treat the relationship between priority and
delivering signals more flexibly.

5 February 2005 02:09

Chapter 13: Signals 187

In the Seventh Edition, if a system call was interrupted, it returned an error, and errno was
sent to EINTR. It was up to the process to decide whether to repeat the call or not. This added
a significant coding overhead to just about every program; the result was that programs usu-
ally did not provide for interrupted system calls, and died when it happened.

Later signal implementations improved on this state of affairs:

• In 4.2BSD, signals automatically restarted the system calls ioctl, read, readv, wait,
waitpid, write and writev.

• In 4.3BSD, the 4.2BSD signal implementation was modified so that the user could elect
not to restart specific system calls after interruption. The default remained to restart the
system call.

• In POSIX.1, when you call sigaction you can specify that system calls interrupted by
specific signals should be restarted. This is done with the SA_RESTART flag in the field
sa_flags. If this flag is not set, the calls will not be restarted.

• SunOS 4 does not have SA_RESTART, but it has SA_INTERRUPT instead, which is effec-
tively the reverse of SA_RESTART: system calls will be restarted unless SA_INTERRUPT is
set,

On modern systems, the action taken depends on the system calls you have used and the sys-
tem you are using:

• With System V, you have the choice of no restart (unreliable signal or System V
sigset and friends) or POSIX.1 selective restart based on the signal (SA_RESTART with
sigaction).

• With BSD, you have the choice of no restart (reliable signal based on sigaction),
default restart based on system calls (sigvec and friends) or again the POSIX.1 selective
restart based on the signal (SA_RESTART with sigaction).

Calling functions from signal handlers
By definition, signals interrupt the normal flow of program execution. This can cause prob-
lems if they call a function that has already been invoked, and which has saved some local
state. The function needs to be written specially to avoid such problems—it should block
either all signals during execution, or, preferably, it should be written reentrantly. Either solu-
tion is difficult, and typically system libraries do not support this kind of reentrancy. On the
other hand, there’s not much you can do without calling some library routine. POSIX.1
defines “safe” routines that you can call from a signal handler. They are:

_exit access alarm cfgetispeed cfgetospeed

cfsetispeed cfsetospeed chdir chmod chown

close creat dup dup2 execle

execve fcntl fork fstat getegid

geteuid getgid getgroups getpgrp getpid

5 February 2005 02:09

188

getppid getuid kill link lseek

mkdir mkfifo open pathconf pause

pipe read rename rmdir setgid

setpgid setsid setuid sigaction sigaddset

sigdelset sigemptyset sigfillset sigismember sigpending

sigprocmask sigsuspend sleep stat sysconf

tcdrain tcflow tcflush tcgetattr tcgetpgrp

tcsendbreak tcsetattr tcsetpgrp time times

umask uname unlink utime wait

waitpid write

In addition, System V.4 allows abort, exit, longjmp, and signal.

Current signal implementations
In this section, we’ll look at the differences between individual signal implementations. We’ll
concentrate on what you need to do to convert from one to another. If you do need to convert
signal code, you should use the POSIX.1 signal implementation whenever practical.

Seventh Edition signal function
The Seventh Edition provided only one signal function, signal, which is the granddaddy of
them all. All systems supply signal, though on some systems, such as newer BSD systems,
it is a library function that calls sigaction. This also means that you can’t rely on specific
semantics if you use signal—avoid it if at all possible. Older UNIX systems (specifically,
those that did not expect function prototypes to be used) implicitly defined the return type of
signal to be an int. This does not change the meaning of the return value, but it can con-
fuse more pedantic compilers. About the only system still on the market that returns an int
from signal is XENIX.

BSD signal functions
The BSD signal functions were the first attempt at reliable signals, and they form the basis of
the POSIX.1 implementation. All modern systems offer the POSIX.1 implementation as well,
and on many BSD systems the functions described in this section are just an interface to the
POSIX.1 functions.

Signal sets

A central difference between the Seventh Edition and System V implementations, on the one
side, and the BSD and POSIX.1 implementations, on the other side, is the way signals can be
specified. The Seventh Edition functions treat individual signals, which are specified by their
number. The BSD routines introduced the concept of the signal set, a bit map of type sigset_t,
that specifies any number of signals, as illustrated in Figure 13-1:

5 February 2005 02:09

Chapter 13: Signals 189

31 30 29 11 10 9 1 0

1 1 0 ... 0 0 0 ... 1

SIGUSR2 SIGUSR1 SIGINFO SIGSEGV SIGBUS SIGKILL SIGHUP (none)

Figure 13−1. BSD and POSIX.1 signal sets

For each signal, if the corresponding bit in the bit map is set, the signal is said to be included
in the set. In this example, the signals specified are SIGUSR2, SIGUSR1 and SIGHUP. This
method enables any number of signals to be specified as the parameter of one call.

The kernel maintains two special signal sets for each process: the signal mask and the pending
signal set. The signal mask specifies which signals should currently not be delivered to the
process — these signals are said to be blocked. This does not mean that they will be ignored:
if a signal occurs while it is blocked, the kernel notes that it has occurred and sets its bit in the
pending signal set. When a subesequent call to sigsetmask resets the bit for this signal in
the signal mask, the kernel delivers the signal to the process and clears the bit in the pending
signal set.

sigsetmask

sigsetmask sets the process signal mask:

#include <sys/signal.h>
int sigsetmask (int mask);

sigsetmask can be defined in terms of the POSIX.1 function sigprocmask using the
SIG_SETMASK flag — see page 194 for more details.

sigblock

sigblock modifies the process signal mask. Unlike sigsetmask, it performs a logical OR
of the specified mask with the current signal mask, so it can only block signals and not enable
them.

#include <sys/signal.h>
int sigblock (int mask);

sigblock can be defined in terms of the POSIX.1 function sigprocmask using the
SIG_BLOCK flag — see page 194 for more details.

5 February 2005 02:09

190

sigvec

sigvec corresponds to the Seventh Edition signal: it sets the disposition of a signal. In addi-
tion, it can block other signals during the processing of a signal.

#include <signal.h>
... in signal.h is the definition
struct sigvec
{
void (*sv_handler) ();
sigset_t sv_mask;
int sv_flags;
};

sigvec (int signum, struct sigvec *vec, struct sigvec *ovec);

signum is the signal whose disposition is to be changed. vec specifies the new disposition of
the signal, and the function returns the old disposition to ovec.

If vec->sv_mask is non-zero, it specifies the signals to block while the signal handler is run-
ning. This is logically ored with the current signal mask, so it works like an implicit sig-
block on entering the signal handler. On exit from the signal handler, the kernel reinstates
the previous signal mask.

flags can consist of:

• SV_ONSTACK specifies to take the signal on alternate signal stack, if one has been
defined.

• SV_INTERRUPT specifies that system calls should not be restarted after the signal handler
has completed.

sigvec is almost identical to the POSIX.1 function sigaction described on page
193 — only the names of the sigvec structure and its members are different. Note, however,
that the flag SV_INTERRUPT has the opposite meaning from the POSIX.1 flag SA_RESTART,
which frequently has the same numeric value.

sigpause

sigpause combines the functionality of sigmask and pause: it first sets the signal mask and
then calls pause to wait for a signal to occur.

#include <sys/signal.h>
int sigpause (sigset_t sigmask);

Typical use of BSD signal functions

Most signal coding consists of initialization. Typical programs set the disposition of the sig-
nals in which they are interested during program initialization, and don’t change them much
after that. For example, with BSD signals you might see code like that in Example 13-2.

Example 13−2:

5 February 2005 02:09

Chapter 13: Signals 191

Example 13−2: (continued)

struct sigvec hupvec = {&hup_handler, 0, 0}; /* disposition of SIGHUP */
struct sigvec iovec = {&io_handler, 1 << SIGHUP, 0}; /* disposition of SIGIO */
sigvec (SIGHUP, &hupvec, NULL); /* instate handlers for SIGHUP, */
sigvec (SIGIO, &iovec, NULL); /* SIGIO, */
sigvec (SIGURG, &iovec, NULL); /* and SIGURG */

Occasionally a process will use sigpause, usually to wait for I/O. In Example 13-3, it blocks
the signals SIGINT and SIGQUIT:

Example 13−3:

sigpause ((1 << SIGINT) | (1 << SIGQUIT)); /* wait for a signal */

System V signal functions
The following signal functions were implemented in System V and are effectively obsolete:
the POSIX.1 functions have replaced them even in System V.3. The syntax of the function
calls is more like the Seventh Edition than POSIX.1. In particular, they do not support the
concept of a signal set. If you do find it necessary to replace System V signals with POSIX.1
signals, there is considerable scope for simplification by merging multiple System V calls
(one per signal) into a single POSIX.1 call.

sigset

sigset is the System V reliable equivalent of signal:

#include <signal.h>
void (*sigset (int sig, void (*disp) (int))) (int);

Unlike signal, the signal is not disabled when the signal handler is executing — instead it is
blocked until the signal handler terminates.

sighold

sighold blocks the delivery of signal sig by setting the corresponding bit in the process sig-
nal mask. Semantically this corresponds to the POSIX.1 function sigprocmask with the
SIG_BLOCK flag, but it can block only one signal per call.

#include <signal.h>
int sighold (int sig);

sigrelse

sigrelse allows the delivery of signal sig by resetting the corresponding bit in the process
signal mask. Semantically this corresponds to the POSIX.1 function sigprocmask with the
SIG_UNBLOCK flag, but it can release only one signal per call.

5 February 2005 02:09

192

#include <signal.h>
int sigrelse (int sig);

sigignore

sigignore sets the disposition of signal sig to SIG_IGN—the kernel ignores the signal.

#include <signal.h>
int sigignore (int sig);

sigpause

#include <signal.h>
int sigpause (int sig);

sigpause enables the delivery of signal sig and then waits for delivery of any signal.

CAUTION This is not the same as the BSD function sigpause described on page 190. BSD
sigpause takes a signal mask as an argument, System V sigpause takes a single signal
number. In addition, BSD sigpause only resets the mask temporarily—until the function
return — whereas System V sigpause leaves it in this condition.

Example of System V signal functions

On page 190, we looked at what typical BSD code might look like. The System V equivalent
of this program might perform the initialization in Example 13-4. System V doesn’t supply
the functionality associated with SIGIO and SIGURG—it uses SIGPOLL instead. See Chapter
14, File systems, pages 209 and 225, for more details of SIGIO and SIGPOLL respectively.

Example 13−4:

sigset (SIGHUP, &hup_handler); /* instate handlers for SIGHUP */
sigset (SIGPOLL, &io_handler); /* and SIGPOLL */

System V sigpause has a different syntax, so we need to set the signal mask explicitly with
calls to sighold, and also to release them explicitly with sigrelse

Example 13−5:

sighold (SIGINT); /* block SIGINT */
sighold (SIGQUIT); /* and SIGQUIT */
sigpause (0); /* wait for something to happen */
sigrelse (SIGINT); /* unblock SIGINT */
sigrelse (SIGQUIT); /* and SIGQUIT */

POSIX.1 signal functions
All modern UNIX implementations claim to support POSIX.1 signals. These are the func-
tions to use if you need to rewrite signal code. They are similar enough to the BSD functions
to be confusing. In particular, the BSD functions pass signal masks as longs, whereas the
POSIX.1 functions pass pointers to the signal mask—this enables the number of signals to
exceed the number of bits in a long.

5 February 2005 02:09

Chapter 13: Signals 193

sigaction

sigaction is the POSIX.1 equivalent of signal. It specifies the disposition of a signal. In
addition, it can specify a mask of signals to be blocked during the processing of a signal, and
a number of flags whose meaning varies significantly from system to system.

#include <signal.h>
struct sigaction
{
void (*sa_handler)(); /* handler */
sigset_t sa_mask; /* signals to block during processing */
int sa_flags;
};

void sigaction (int sig,
const struct sigaction *act,
struct sigaction *oact);

signum is the signal whose disposition is to be changed. act specifies the new disposition of
the signal, and the function returns the old disposition to oact.

If act->sa_mask is non-zero, it specifies which signals to block while the signal handler is
running. This is logically ored with the current signal mask, so it works like an implicit sig-
block on entering the signal handler.

Here’s an overview of the flags:

Table 13−2: sigaction flags

Parameter supported meaning
by

SA_ONSTACK BSD, Sys-
tem V

Take the signal on the alternate signal stack, if one has
been defined. POSIX.1 does not define the concept of
an alternate signal stack—see page 196 for more de-
tails. Linux plans similar functionality with the
SA_STACK flag, but at the time of writing it has not
been implemented.

SA_RESETHAND System V Reset the disposition of this signal to SIG_DFL when
the handler is entered (simulating Seventh Edition se-
mantics). This is the same as the Linux SA_ONESHOT
flag.

SA_ONESHOT Linux Reset the disposition of this signal to SIG_DFL when
the handler is entered (simulating Seventh Edition se-
mantics). This is the same as the System V SA_RE-
SETHAND flag.

5 February 2005 02:09

194

Table 13−2: sigaction flags (continued)

Parameter supported meaning
by

SA_RESTART BSD, Lin-
ux, System
V

Restart system calls after the signal handler has com-
pleted (see page 186).

SA_SIGINFO System V Provide additional parameters to signal handler (see
page 183).

SA_NODEFER System V Don’t block this signal while its signal handler is ac-
tive. This means that the signal handler can be called
from a function which it calls, and thus needs to be
reentrant.

SA_NOCLDWAIT System V Don’t create zombie children on SIGCLD (see page
186).

SA_NOCLDSTOP Linux, Sys-
tem V

Don’t generate SIGCHLD when a child stops, only
when it terminates.

SA_NOMASK Linux Disable the signal mask (allow all signals) during the
execution of the signal handler.

SA_INTERRUPT Linux Disable automatic restart of signals. This corresponds
to the SunOS 4 flag SV_INTERRUPT to sigvec (see
page 190). Currently not implemented.

sigprocmask

sigprocmask manipulates the process signal mask. It includes functional modes that corre-
spond to both of the BSD functions sigblock and sigsetmask:

#include <signal.h>
int sigprocmask (int how, const sigset_t *set, sigset_t *oset)

The parameter how determines how the mask is to be manipulated. It can have the following
values:

Table 13−3: sigprocmask functional modes

Parameter meaning

SIG_BLOCK Create a new signal mask by logically oring the current mask with the speci-
fied set.

SIG_UNBLOCK Reset the bits in the current signal mask specified in set.

SIG_SETMASK Replace the current signal mask by set.

5 February 2005 02:09

Chapter 13: Signals 195

sigpending

#include <signal.h>
int sigpending (sigset_t *set);

sigpending returns the pending signal mask to set. These are the signals pending delivery
but currently blocked, which will be delivered as soon as the signal mask allows. The return
value is an error indication and not the signal mask. This function does not have an equivalent
in any other signal implementation

sigsuspend

#include <sys/signal.h>
int sigsuspend (const sigset_t *sigmask);

sigsuspend temporarily sets the process signal mask to sigmask, and then waits for a sig-
nal. When the signal is received, the previous signal mask is restored on exit from sigsus-
pend. It always returns -1 (error), with errno set to EINTR (interrupted system call).

Example of POSIX.1 signal functions

On page 190, we looked at a simple example of signal setup, and on page 192 we changed it
for System V. Changing it from BSD to POSIX.1 is mainly a matter of changing the names.
We change the calls to sigvec to sigaction, and their parameters are now also of type
struct sigaction instead of struct sigvec.

Unfortunately, there is a problem with this example: POSIX.1 does not define any of the I/O
signals to which this example refers. This is not as bad as it sounds, since there are no pure
POSIX.1 systems, and all systems offer either SIGIO/SIGURG or SIGPOLL. In Example 13-6,
we’ll stick with the BSD signals SIGIO and SIGURG:

Example 13−6:

struct sigaction hupvec = {&hup_handler, 0, 0}; /* disposition of SIGHUP */
struct sigaction iovec = {&io_handler, 1 << SIGHUP, 0}; /* disposition of SIGIO */
sigaction (SIGHUP, &hupvec, NULL); /* instate handlers for SIGHUP, */
sigaction (SIGIO, &iovec, NULL); /* SIGIO, */
sigaction (SIGURG, &iovec, NULL); /* and SIGURG */
sigset_t blockmask; /* create a mask */
sigemptyset (&blockmask); /* clear signal mask */
sigaddset (&blockmask, SIGINT); /* add SIGINT to the mask */
sigaddset (&blockmask, SIGQUIT); /* add SIGQUIT to the mask */

Example 13-7 shows the corresponding call to sigsuspend:

Example 13−7:

sigsuspend (&blockmask); /* let the action begin */

We’ll look at sigemptyset and sigaddset in the next section. It’s unfortunate that this part
of the initialization looks so complicated—it’s just part of the explicit programming style that
POSIX.1 desires. On most systems, you could get the same effect without the calls to
sigemptyset and sigaddset by just defining

5 February 2005 02:09

196

int blockmask = (1 << SIGINT) | (1 << SIGQUIT);
sigpause ((sigset_t *) &blockmask); /* let the action begin */

The only problem with this approach (and it’s a showstopper) is that it’s not portable: on a dif-
ferent system, sigset_t might not map to int.

Signals under Linux
Linux signals are an implementation of POSIX.1 signals, and we discussed some of the
details in the previous section. In addition, it’s good to know that:

• For compatibility, SIGIOT is defined as SIGABRT. POSIX.1 does not define SIGIOT.

• As we saw, POSIX.1 does not supply the signals SIOPOLL, SIGIO and SIGURG. Linux
does, but they it maps all three signals to the same numerical value.

• If you really want to, you can simulate unreliable signals under Linux with sigaction
and the SA_ONESHOT flag.

Other signal-related functions
A significant advantage of the BSD and POSIX.1 signal functions over the Seventh Edition
and System V versions is that they hav e signal set parameters. The down side of signal sets is
that you need to calculate the values of the bits. The following functions are intended to make
manipulating these structures easier. They are usually implemented as macros:

• sigemptyset (sigset_t *set) sets set to the “empty” signal set—in other words,
it excludes all signals.

• sigfillset (sigset_t *set) sets all valid signals in set.

• sigaddset (sigset_t *set, int signum) adds signal signum to set.

• sigdelset (sigset_t *set, int signum) removes signal signum from set.

• sigismember (sigset_t *set, int signum) returns 1 if signum is set in set and
0 otherwise.

sigstack and sigaltstack
As we have already discussed, a signal is like a forced function call. On modern processors
with stack-oriented hardware, the call uses stack space. In some cases, a signal that arrives at
the wrong time could cause a stack overflow. To avoid this problem, both System V and BSD
(but not POSIX.1) allow you to define a specific signal stack. On receipt of a signal, the stack
is switched to the alternate stack, and on return the original stack is reinstated. This can also
occasionally be of interest in debugging: if a program gets a signal because of a reference
beyond the top of the stack, it’s not much help if the signal destroys the evidence.

BSD supplies the sigstack system call:

5 February 2005 02:09

Chapter 13: Signals 197

#include <sys/signal.h>
struct sigstack
{
caddr_t ss_sp; /* Stack address */
int ss_onstack; /* Flag, set if currently

* executing on this stack */
};

int sigstack (const struct sigstack *ss, struct sigstack *oss);

• ss may be NULL. If it is not, the process signal stack is set to ss->ss_sp.

• ss->ss_onstack tells sigstack whether the process is currently executing on the
stack.

• oss may also be NULL. If it is not, information about the current signal stack is returned
to it.

System V supplies the function sigaltstack:

#include <signal.h>
typedef struct
{
char *ss_sp; /* Stack address */
int ss_size; /* Stack size */
int ss_flags; /* Flags, see below */
}

stack_t;
int sigaltstack (const stack_t *ss, stack_t *oss);

• ss may be NULL. If it is not, the process signal stack is set to ss->ss_sp, and its size is
set to ss->ss_size.

• oss may also be NULL. If it is not, information about the current signal stack is returned
to it.

• The structure element ss_flags may contain the following flags:

• SS_DISABLE specifies that the alternate stack is to be disabled. ss_sp and
ss_size are ignored. This flag is also returned in oss when the alternate stack is
disabled.

• SS_ONSTACK (returned) indicates that the process is currently executing on the alter-
nate stack. If this is the case, a modification of the stack is not possible.

setjmp and longjmp
When you return from a function, C language syntax does not give you a choice of where to
return to: you return to the instruction after the call. Occasionally, deep in a series of nested
function calls, you will discover you need to return several levels down the stack—effectively,
you want to perform multiple returns. Standard “structured programming” techniques do not
handle this requirement well, and you can’t just perform a goto to the location, because that
would leave the stack in a mess. The library functions setjmp and longjmp provide this
non-local return.

5 February 2005 02:09

198

What does this have to do with signals? Nothing, really, except that the receipt of a signal is
one of the most common reasons to want to perform a non-local return: a signal can interrupt
processing anywhere where the process signal mask allows it. In many cases, the result of the
signal processing is not related to the processing that was interrupted, and it may be necessary
to abort the processing and perform a non-local return. For example, if you are redisplaying
data in an X window and the size of the window changes, you will get a SIGWINCH signal.
This requires a complete recalculation of what needs to be displayed, so there is no point in
continuing the current redisplay operation.

Non-local returns are implemented with the functions setjmp, longjmp, and friends.
setjmp saves the process context and longjmp restores it—in other words, it returns to the
point in the program where setjmp was called. Unlike a normal function return, a longjmp
return may involve discarding a significant part of the stack. There are a number of related
functions:

#include <setjmp.h>

int setjmp (jmp_buf env);
void longjmp (jmp_buf env, int val);
int _setjmp (jmp_buf env);
void _longjmp (jmp_buf env, int val);
void longjmperror (void);
int sigsetjmp (sigjmp_buf env, int savemask);
void siglongjmp (sigjmp_buf env, int val);

The definitions of jmp_buf and sigjmp_buf are less than illuminating: they are just defined
as an array of ints long enough to contain the information that the system saves. In fact, they
contain the contents of the registers that define the process context — stack pointer, frame
pointer, program counter, and usually a number of other registers.

From the user point of view, setjmp is unusual in that it can return more often than you call
it. Initially, you call setjmp and it returns the value 0. If it returns again, it’s because the
program called longjmp, and this time it returns the value parameter passed to longjmp,
which normally should not be 0. The caller can then use this value to determine whether this
is a direct return from setjmp, or whether it returned via longjmp:

int return_code = setjmp (env);
if (return_code)
{ /* non-0 return code: return from longjmp */
printf ("longjmp returned %d\n", return_code);
}

These functions are confusing enough in their own right, but they also have less obvious fea-
tures:

• It doesn’t make any sense for longjmp to return 0, and System V.4 longjmp will never
return 0, even if you tell it to—it will return 1 instead. BSD longjmp will return what-
ev er you tell it to.

• The setjmp functions save information about the state of the function that called them.
Once this function returns, this information is no longer valid. For example, the

5 February 2005 02:09

Chapter 13: Signals 199

following code will not work:

jmp_buf env; /* save area for setjmp */

int mysetjmp ()
{
int a = 0;
if (a = setjmp (env))
printf ("Bombed out\n");

return a;
}

foo ()
{
...
mysetjmp (); /* catch bad errors */
...
}

The return instruction from mysetjmp to foo frees its local environment. The memory
which it occupies, and which the call to setjump saved, will be overwritten by the next
function call, so a longjmp cannot restore it.

• BSD attempts to determine whether the parameter env to the longjmp functions is
invalid (such as in the example above). If it detects such an error, it will call longjm-
perror, which is intended to inform that the longjmp has failed. If longjmperror
returns, the process is aborted.

If longjmp does not recognize the error, or if the system is not BSD, the resulting
process state is indeterminate. To quote the System V.4 man page: If longjmp is called
even though env was never primed by a call to setjmp, or when the last such call was in a
function that has since returned, absolute chaos is guaranteed. In fact, the system will
probably generate a SIGSEGV or a SIGBUS, but the core dump will probably show noth-
ing recognizable.

• When longjmp returns to the calling function, automatic variables reflect the last modifi-
cations made to them in the function. For example:

int foo ()
{
int a = 3;
if (setjmp (env))
{
printf ("a: %d\n", a);
return a;
}

a = 2;
longjmp (env, 4);
}

At the point where longjmp is called, the variable a has the value 2, so this function will
print a:2.

5 February 2005 02:09

200

• When longjmp returns to the calling function, register variables will normally have the
values they had at the time of the call to setjmp, since they hav e been saved in the jump
buffer. Since optimizers may reassign automatic variables to registers, this can have con-
fusing results. If you compile the example above with gcc and optimize it, it will print
a: 3. This is clearly an unsuitable situation: the solution is to declare a to be volatile
(see Chapter 20, Compilers, page 340 for more information). If we do this, a will always
have the value 2 after the longjmp.

• BSD setjmp includes the signal mask in the state information it saves, but System V.4
setjmp does not save the signal mask. If you want to simulate System V.4 semantics
under BSD, you need to use _setjmp and _longjmp, which do not save the signal mask.
In either system, you can use sigsetjmp, which saves the signal mask only if save is
non-zero. Except for the type of its first parameter, the corresponding siglongjmp is
used in exactly the same manner as longjmp.

• The functions must be paired correctly: if you _setjmp, you must _longjmp, and if you
setjmp you must longjmp.

kill
kill is one of the most badly named system calls in the UNIX system. Its function is to send
a signal:

#include <signal.h>
int kill (pid_t pid, int sig);

Normally, pid is the process ID of the process that should receive the signal sig. There are a
couple of additional tricks, however:

• If pid is 0, the kernel sends sig to all processes whose process group ID is the same as
the group ID of the calling process.

• If pid is -1, most implementations broadcast the signal to all user processes if the signal
is sent by root. Otherwise the signal is sent to all processes with the same effective user
ID. BSD does not broadcast the signal to the calling process, System V does. POSIX.1
does not define this case.

• If pid is < -1, System V and BSD broadcast the signal to all processes whose process
group ID is abs (pid) (abs is the absolute value function). Again, non-root processes
are limited to sending signals to processes with the same effective user ID. BSD can also
perform this function with the call killpg.

Another frequent use of kill is to check whether a process exists: kill (pid, 0) will not
actually send a signal, but it will return success if the process exists and an error indication
otherwise.

5 February 2005 02:09

Chapter 13: Signals 201

killpg
killpg broadcasts a signal to all processes whose process group ID is abs (pid). It is sup-
plied with BSD systems:

#include <sys/signal.h>

int killpg (pid_t pgrp, int sig);

This function sends the signal to the process group of the specified process, assuming that you
have the same effective user ID as the recipient process, or you are super-user. You can use
pid 0 to indicate your own process group. If you don’t hav e this function, you can possibly
replace it with kill(-pgid)—see the section on kill above.

raise
raise is an ANSI C function that enables a process to send a signal to itself. It is defined as

int raise (int signum);

Older systems don’t hav e raise. You can fake it in terms of kill and getpid:

kill (getpid (), signum);

sys_siglist and psignal
At the name implies, sys_siglist is a list and not a function. More exactly, it is an array of
signal names, indexed by signal number, and is typically supplied with BSD-derived systems.
For example,

printf ("Signal %d (%s)\n", SIGSEGV, sys_siglist [SIGSEGV]);

returns

Signal 11 (Segmentation fault)

Some systems supply the function psignal instead of sys_siglist. It prints the text corre-
sponding to a signal. You can get almost the same effect as the printf above by writing

char msg [80];
sprintf (msg, "Signal %d", SIGSEGV);
psignal (SIGSEGV, msg);

This gives the output:

Signal 11: Segmentation fault

5 February 2005 02:09

