5 February 2005 02:09

Signals

Signals are another area in UNIX where the initial implementation was inadequate, and multi-
ple implementations have developed in the course of the time. If you try to port software
which assumes the presence of one implementation, and your system doesn’t support this
implementation, you could be in for a significant amount of rewriting. The situation isn’t
improved by the fact that there are a number of subtle differences between the various imple-
mentations and even between different systems with the same implementation. In this chap-
ter, we’ll look at those aspects of signal implementation which are of interest to porting.

There have been four different implementations in the course of UNIX history:

e The Seventh Edition had so-called unreliable signals. and handled them with the signal
system call. System V still supplies them with the si gnal system call. As we will see
on page 188, the use of the si gnal function does not automatically imply unreliable sig-
nals.

e 4.2BSD introduced the first implementation of reliable signals. It uses the functions
si gnal , si gvec, si gbl ock, si gset mask and si gpause.

e System V introduced an alternative implementation of reliable signals. It uses the func-
tions si gset , si ghol d, si gr el se, si gi gnor e and si gpause.

* Finally, POSIX.1 defined a third implementation of reliable signals. These are based on
the BSD signals and use the functions si gact i on, si gpr ocnask, si gpendi ng and
Si gsuspend.

Most people think of signals as the way the operating system or an outside user stops a pro-
gram that is misbehaving. More generally, they are a means to cause execution of functions
out of sequence, and have thus been called software interrupts. Hardware interrupts cause the
system to interrupt normal processing and perform a specific sequence of instructions. Sig-
nals do the same thing in software: when a process receives a signal, the kernel simulates a
call to a pre-defined routine.” The routine, called a signal handler, handles the signal and pos-
sibly returns to the “caller”. It would be a significant overhead for every program to supply a

* This is not a real call: when the kernel delivers the signal, it modifies the process stack and registers so
that it looks as if the signal handler has just been called. When the process continues executing, it is in
the signal handler. Nobody ever really calls the signal handler.

179

180

signal handler for every conceivable signal, so the kernel supplies two default methods of han-

dling the signal. The choice of a signal handler or one of the two defaults is called the dispo-

sition of the signal. Initially, each signal’s disposition is set either to ignore the signal or to

terminate the process if the signal occurs. In some cases, the system writes a core file, a copy

of the state of the process, when the process is terminated.

Signals may come from a number of different sources:

« External events. For example, pressing CTRL- Cor DEL on most systems causes the ter-
minal driver to send a Sl @ NT signal to the foreground process group of the terminal.

« Internal events. For example, al ar mcauses a S| GALRMsignal after the specified time-
out.

« Hardware interrupts. For example, if a process attempts to access a page that is not part
of its address space, it will receive a S GSEGV or S| GBUS signal.

« Asthe result of another process calling ki I | .

In this chapter, we’ll consider which signals are supported by which operating systems, and
how signals are implemented in different operating systems.

Supported signals

The Seventh Edition had 15 signals, and current implementations allow up to 31, though not
all are used. In the course of time, the meanings have also diverged somewhat. Table 13-1
gives an overview of which signals are present in which implementations.

Table 13—1: Signal usage

S gnal V S S B P | action | purpose
7 vV V S 0]
R R D S
3 4 |
X
S| GABRT « « « Jcore abort call®
S| GALRVI kill real-time timer expired
S B core bus error
SI@H.D . . . ignore | child status has changed
SIAD . . ignore | child status has changed
S| GOONT ignore | continue after stop
S GEM core emulate instruction executed
S| GFPE core floating-point exception
SIGHP kill line hangup
SI@LL core illegal instruction
SIA NFO . . ignore | status request from keyboard

5 February 2005 02:09

5 February 2005 02:09

Chapter 13: Signals

181

Table 13—1: Signal usage (continued)

S gnal V S S B P | action | purpose
7 V. V S O
R R D S
3 4 |
X
SI@NT kill interrupt program (usually from termi-
nal driver)
SNeNel . . ignore | 1/O completion outstanding
sqor . core 10T instruction®
SIQdLL) kill kill program’
S & PE kill write on a pipe with no reader
S GPRCF . . kill profiling timer alarm
S GPWR . T ignore | power fail/restart
SQUT core quit program (usually from terminal
driver)
S| GSEQV core segmentation violation
Sl GSTCP e stop stop’
S GBYS ¢ e . core invalid system call
S| GTERM ¢ e . kill software termination signal
S GTRAP L core trace trap
Sl GISTP . . . stop stop signal generated from keyboard
SIGITIN . . . stop background read from control terminal
S GITaJ . . . stop background write to control terminal
S ARG . . ignore | urgent condition present on socket
S GBRL . T kill User defined signal 1
S GBBR . T kill User defined signal 2
S| GVTALRM . kill virtual time alarm
S| GVNCH e ignore | Window size change
Sl GXCPU . . . core cpu time limit exceeded
S FZ . . . core file size limit exceeded

' Sometimes called Sl GPCLL in System V.

Sl @ OT and S GABRT usually have the same signal number.

* Not available in all versions.
* This signal cannot be caught or ignored.

Unreliable and reliable signals

The terms unreliable signals and reliable signals need explaining. The problem relates to
what happens when a signal handler is active: if another signal occurs during this time, and it
is allowed to be delivered to the process, the signal handler will be entered again. Now it’s
not difficult to write reentrant” signal handlers—in fact, it’s a very good idea, because it

* A reentrant function is one which can be called by functions which it has called—in other words, it

5 February 2005 02:09

182

means that you can use one signal handler to handle multiple signals—but if the same signal
reoccurs before the signal handler has finished handling the previous instance, it could happen
again and again, and the result can be a stack overflow with repeated signal handler calls.

The original signal implementation, which we call unreliable signals, had a simplistic attitude
to this problem: it reset the signal dispostion to the default, which meant that if another signal
occurred while the previous one was being processed, the system would either ignore the sig-
nal (so it would lose the signal) or terminate the process (which is probably not what you
want). It was up to the signal handler to reinstate the signal disposition, and this couldn’t be
done immediately without running the risk of stack overflow.

All newer signal implementations provide so-called reliable signals. The signal disposition is
not changed on entry to the signal handler, but a new signal will not be delivered until the sig-
nal handler returns. This concept is called blocking the signal: the system notes that the signal
is pending, but doesn’t deliver it until it is unblocked.

There are a number of things that the term reliable signal does not mean:

« It doesn’t imply that the underlying kernel implementation is bug-free. Depending on
the implementation, there is still a slight chance that the kernel will lose the signal.

+ It doesn’t imply that a signal cannot get lost. The method used to queue signals is to set
a bit in a bit mask. If multiple signals of the same kind occur while the signal is blocked,
only one will be delivered.

+ It doesn’t imply that you don’t need reentrant signal handlers. The system blocks only
the signal that is currently being handled. If you have a single handler for multiple sig-
nals, it will need to be reentrant. In particular, this means that you should at least be very
careful with static variables and preferably use few local variables (since they take up
stack space). You should also be careful with the functions you call—we’ll take another
look at this on page 187.

The semantics of each implementation differ in subtle ways, so changing to a different set of
signal calls involves more than just changing the function calls and parameters. Here’s a brief
overview of the differences you might encounter:

« With unreliable signals, after a signal occurs, the signal disposition is reset to default, so
the signal handler must reinstate itself before returning. If a second signal occurs before
the disposition is reinstated, the process may be terminated (if the default disposition is
terminate) or the signal may be completely forgotten (if the default disposition is ignore).

+ The names and purposes of the signals differ significantly from one implementation to
the next. See Table 13-2 for an overview.

+ In modern implementations, the function call si gnal varies in its meaning. In System
V, it uses the old, unreliable Seventh Edition signal semantics, while in BSD it is an
interface to the si gact i on system call, which provides reliable signals. If you’re port-
ing BSD si gnal to System V, you should modify the code use si gact i on instead.

can be entered again before it has returned. This places a number of restrictions on the function. In par-
ticular, it cannot rely on external values, and may not use static storage.

5 February 2005 02:09

Chapter 13: Signals 183

The fi rst parameter to a signal handler is always the number of the signal. Both System
V.4 and BSD can supply additional parameters to the signal handlers. We'll look at the
additional parametersin more detail on page 183.

The handling of interrupted system calls varies from one system to the next. We'll 1ook
into this topic in more detail on page 186.

The difference between the signals S| BUS and SI GSEGV is purely historical: it relatesto

the PDP-11 hardware interrupt that detected the problem. In modern systems, it depends
on the whim of the implementor when you get which signal. POSIX.1 defi nes only
S GSEGV, but this doesn’t help much if the processor generates S| (BUS anyway. It's best

to treat them as being equivalent.

Sl QLDisa System V version of S GOHLD. A number of hairy problems can arise with
S GLD; we'll look at them in more detail on page 186.

Sl d LL was generated by theabor t function in early BSD implementations. Early Sys-
tem V used SIQ OT instead. All modern implementations generate S| GABRT. Fre-
quently you'll fi nd that these two signals are in fact defi ned to have the same number; if
you run into troubles where one or the other is undefi ned, you could possibly do just this:

#define S1 @ Or S| GABRT

Signal handlers

Modern versions of UNIX defi ne signal handlers to be of type

void (*signal (int signum void (*handler))) (int hsignum)

This is probably one of the most confusing defi nitions you are likely to come across. To
understand it, it helps to remember that we are talking about two functions:

The signal handler, called handl er in this declaration, takes an int parameter hsi gnum
and returns avoi d pointer to the old signal handler function, which is of the same type
asitself.

The function si gnal , which takes two parameters. The fi rst is si gnum the number of
the signal to be handled, of typei nt , and the second is a pointer to a signal handler func-
tionhandl er . It alsoreturnsavoi d pointer to asignal handler function.

In fact, in many implementations the signal handler function takes additional parameters, and
you may fi nd that your program takes advantage of them. We'll look at these in the following
sections.

System V.4 signal handlers

The System V.4 signal handler interface offers additional functionality in certain circum-
stances: if you use the si gact i on interface and you set the fbeg SA SI @ NFOin sa _fl ags,
the signal handler isinvoked asif it were defi ned

184

voi d handl er (int signum
struct siginfo *info,
struct ucontext *context);

si gi nf o is an enormous structure, defi ned in /usr/include/siginfo.h, which starts with

struct siginfo

{

int si_signo; /* signal fromsignal.h */
int si_code; /* code from above */

int si_errno; /* error fromerrno.h */

. nore stuff, including space for further growh
}

ucont ext is defi ned in /usr/include/ucontext.h and contains information about the user con-

text at the time of the signal application. It includes the following fi elds:

e uc_si gnask isthe blocked signal mask.

e us_stack pointsto the top of stack at the time the signal was delivered.

e uc_ntont ext contains the processor registers and any implementation specifi ¢ context
data.

For example, assume you had set the signal handler for S| G-PE with the call in Example 13-1.

Example 13-1:

voi d borbout _handl er (int signum
struct siginfo *info,
struct ucontext *context);

si gset _t bonbout _nask;
struct sigaction bad_error = {&onbout handl er, handl er for the signal

&onbout _nask, signal s to nask
SA SSANG; we want additional info
si genpt yset (&onbout _mask) ; no signals in nask

sigaction (SIGPE &bad_error, NULL);

Onreceipt of aSl GFPE,

e signal will besettoS G-PE.

e info->si_signo will asobe setto Sl G-PE.

e On an i386 machine, i nf o- >si _code might be, for example, FPE | NTD V (indicating
an integer divide by zero) or FPE_FLTUND (indicating fbating point underfow).

e Thevaueofinfo->si_errno can't berelied on to have any particular value.
e context->uc_si gmask contains the current signal mask.

e context->uc_stack will point to the stack in use at the time the signal was delivered.

5 February 2005 02:09

Chapter 13: Signals 185

e context->uc_ntont ext will contain the contents of the processor registers at the time
of theinterrupt. This can be useful for debugging.

BSD signal handlers

BSD signa handlers do not use the fleg SA SI @ NFOfor sa_f 1 ags. Signal handlers always
receive three parameters:

void handl er (int signum int code, struct sigcontext *context);

code gives additional information about certain signals—you can fi nd this information in the

header fi le /usr/include/machine/trap.h. This fi le also contains information about how hard-
ware interrupts are mapped to signals. cont ext is hardware-dependent context information

that can be used to restore process state under some circumstances. For example, for a Sparc

architectureit is defi ned as

struct sigcont ext

{

int sc_onstack; /* sigstack state to restore */
int sc_nask; /* signal nask to restore */
/* begi n machi ne dependent portion */

int sc_sp; /* %p to restore */

int sc_pc; /* pc to restore */

int sc_npc; /* npc to restore */

int sc_psr; /* psr to restore */

int sc_gl; /* %1 to restore */

int sc_o0; /* %0 to restore */

IS

The program of Example 13-1 won't compile under BSD, since BSD doesn’t defi ne SA SI G
I NFQ and the parameters for bonbout _handl er are different. We need to modify it alittle:

voi d bonbout _handl er (int signum
int code,
struct sigcontext *context);

si gset _t bonbout _mask;
struct sigaction bad_error = {&onbout _handl er, handl er for the signal
&bonbout _nask, signal s to nmask
U¥
. the rest stays the sanme
If you enter this signal handler because of aSl G-PE, you might fi nd:
e si gnumwill be set to Sl G-PE.

e On an i386 machine, code might be, for example, FPE | NTO/F_TRAP (indicating an
integer divide by zero) or FPE_FLTUND TRAP (indicating floating point underfow).

* Thevaueof sc_onst ack would be the previous sigstack state.

e context->sc_mask contains the current blocked signal mask, like cont ext - >uc_si g-
nask in the System V.4 example.

5 February 2005 02:09

5 February 2005 02:09

186

* Therest of the cont ext structure shows the same kind of register information that Sys-
tem V.4 storesin cont ext - >uc_ntont ext .

SIGCLD and SIGCHLD

System V treats the death of a child differently from other implementations: The System V

signal S QLD differs from the BSD and POSIX.1 signal SI GCHLD and from all other signals
by remaining active until you call wai t . This can cause infi nite recursion in the signal han-
dler if you reinstate the signal via si gnal or si gset before callingwait. If you use the
POSIX.1si gacti on call, you don’t have to worry about this problem.

When achild dies, it becomes azombie. Asall voodoo fans know, azombie is one of the Liv-
ing Dead, neither alive nor dead. In UNIX terminology, when a child process dies it becomes
a zombie: the text and data segments are freed, and the fi les are closed, but the process table
entry and some other information remain until it is exorcized by the parent process, which is
done by calling wai t. By default, System V ignores S| GOLD and S| GOHLD, but the system
creates zombies, so you can fi nd out about child status by calling wait. If, however, you
change the default to explicitly ignore the signal, the system ignores S GCHLD and S| GQCLD,

but it also no longer creates zombie processes. If you set the disposition of SI GCH.D and
S QLD to ignore, but you call wai t anyway, it waits until all child processes have termi-
nated, and then returns -1 (error), with er r no set to ECH LD. You can achieve the same effect
with si gacti on by specifying the SA NOOLDM T fleg in sa_fl ags. There is no way to

achieve this behaviour in other versions of UNIX: if you fi nd your ported program is collect-
ing zombies (which you will see with the ps program), it might be that the program uses this
feature to avoid having to call wai t. If you experience this problem, you can solve it by
adding asignal handler for S| @LDthat just callswai t and returns.

The signal number for SI GOLD is the same as for S GCHLD. The semantics depend on how
you enable it; if you enable it with si gnal , you get SI GOLD semantics (and unreliable sig-
nals), and if you enable it with si gacti on you get Sl GCHLD and reliable signals. Don't rely
on this, however. Some versions of System V have special coding to ensure that a separate
Sl @LDsignal is delivered for each child that dies.

Interrupted system calls

Traditional UNIX kernels differentiate between fast and slow system calls. Fast calls are han-
died directly by the kernel, while slow calls require the cooperation of other processes or
devicedrivers. Whilethe call isbeing executed, the calling process is suspended.

If asignal for a process occurs while the process is suspended, the behaviour depends both on
whether the call is fast or slow, and on the signal implementation. On traditional systems, if
the priority is numerically less than (of a higher priority than) the constant PZERQ, the signal
is slow and remains pending until the priority rises above PZERO. Otherwise it is fast, and the
system call is interrupted. Typically, this means that disk and network operations are not
interrupted, since they run at a priority below PZERO, whereas terminal and serial line opera-
tions can be interrupted. Some newer systems treat the relationship between priority and
delivering signals more fexibly.

5 February 2005 02:09

Chapter 13: Signals 187

In the Seventh Edition, if a system call was interrupted, it returned an error, and err no was
sent to El NTR It was up to the process to decide whether to repeat the call or not. This added
a significant coding overhead to just about every program; the result was that programs usu-
ally did not provide for interrupted system calls, and died when it happened.

Later signal implementations improved on this state of affairs:

« In 4.2BSD, signals automatically restarted the system callsi octl , read, readv, wai t,
waitpid,witeandwitev.

« In 4.3BSD, the 4.2BSD signal implementation was modified so that the user could elect
not to restart specific system calls after interruption. The default remained to restart the
system call.

« In POSIX.1, when you call si gacti on you can specify that system calls interrupted by
specific signals should be restarted. This is done with the SA RESTART flag in the field
sa flags. If this flag is not set, the calls will not be restarted.

¢ SunOS 4 does not have SA RESTART, but it has SA | NTERRUPT instead, which is effec-
tively the reverse of SA RESTART: system calls will be restarted unless SA | NTERRUPT is
set,

On modern systems, the action taken depends on the system calls you have used and the sys-
tem you are using:

« With System V, you have the choice of no restart (unreliable si gnal or System V
si gset and friends) or POSIX.1 selective restart based on the signal (SA_RESTART with
si gacti on).

« With BSD, you have the choice of no restart (reliable si gnal based on si gacti on),
default restart based on system calls (si gvec and friends) or again the POSIX.1 selective
restart based on the signal (SA_RESTART with si gact i on).

Calling functions from signal handlers

By definition, signals interrupt the normal flow of program execution. This can cause prob-
lems if they call a function that has already been invoked, and which has saved some local
state. The function needs to be written specially to avoid such problems—it should block

either all signals during execution, or, preferably, it should be written reentrantly. Either solu-
tion is difficult, and typically system libraries do not support this kind of reentrancy. On the
other hand, there’s not much you can do without calling some library routine. POSIX.1
defines “safe” routines that you can call from a signal handler. They are:

_exit access alarm cfgetispeed cf get ospeed
cfsetispeed cfsetospeed chdir chnod chown

cl ose creat dup dup2 execl e
execve fentl fork fstat get egi d

get eui d getgid get gr oups get pgr p getpid

188

get ppi d getuid kill l'ink | seek

nkdi r nkfifo open pat hconf pause

pi pe read r enane rndir setgid
setpgi d setsid setuid si gaction si gaddset
si gdel set si genpt yset sigfillset si gi snmenber si gpendi ng
sigprocmask si gsuspend sl eep st at sysconf
tcdrain tcfl ow tcflush tcgetattr t cget pgrp
tcsendbreak tcsetattr tcset pgrp time times
unmask unare unl i nk utinme wai t

wai tpid wite

In addition, System V.4 alowsabort , exi t, | ongj np, and si gnal .

Current signal implementations

In this section, we'll look at the differences between individual signal implementations. We'll
concentrate on what you need to do to convert from one to another. If you do need to convert
signal code, you should use the POSIX.1 signal implementation whenever practical.

Seventh Edition signal function

The Seventh Edition provided only one signal function, si gnal , which is the granddaddy of
them all. All systems supply si gnal , though on some systems, such as newer BSD systems,
it is alibrary function that calls si gacti on. This aso means that you can't rely on specifi ¢
semantics if you use si gnal —avoid it if at al possible. Older UNIX systems (specifi cally,

those that did not expect function prototypes to be used) implicitly defi ned the return type of
signal tobeanint. Thisdoes not change the meaning of the return value, but it can con-
fuse more pedantic compilers. About the only system still on the market that returns an i nt

fromsi gnal isXENIX.

BSD signal functions

The BSD signal functions were the fi rst attempt at reliable signals, and they form the basis of
the POSIX.1 implementation. All modern systems offer the POSIX.1 implementation as well,
and on many BSD systems the functions described in this section are just an interface to the
POSIX.1 functions.

Signal sets

A central difference between the Seventh Edition and System V implementations, on the one

side, and the BSD and POSIX.1 implementations, on the other side, is the way signals can be

specifi ed. The Seventh Edition functions treat individual signals, which are specifi ed by their
number. The BSD routines introduced the concept of the signal set, a bit map of type sigset_t,

that specifi es any number of signals, asillustrated in Figure 13-1:

5 February 2005 02:09

5 February 2005 02:09

Chapter 13: Signals 189

31 30 29 11 10 1 0

o] . Jo|o]o]

TN N

SI G NFO S GSEQV SI @S SI&ILL GHP (none)

Figure 13-1. BSD and POSIX.1 signal sets

For each signal, if the corresponding bit in the bit map is set, the signal is said to be included
in the set. In this example, the signals specified are Sl QISR2, SI QUSRL and S| GHUP. This
method enables any number of signals to be specified as the parameter of one call.

The kernel maintains two special signal sets for each process: the signal mask and the pending
signal set. The signal mask specifies which signals should currently not be delivered to the
process—these signals are said to be blocked. This does not mean that they will be ignored:
if a signal occurs while it is blocked, the kernel notes that it has occurred and sets its bit in the
pending signal set. When a subesequent call to si gset mask resets the bit for this signal in
the signal mask, the kernel delivers the signal to the process and clears the bit in the pending
signal set.

sigsetmask
si gset mask sets the process signal mask:

#i ncl ude <sys/signal . h>
int sigsetmask (int nmask);

si gset mask can be defined in terms of the POSIX.1 function si gpr ocnask using the
S G_SETVASK flag—see page 194 for more details.

sigbhlock

si gbl ock modifies the process signal mask. Unlike si gset mask, it performs a logical OR
of the specified mask with the current signal mask, so it can only block signals and not enable
them.

#i ncl ude <sys/signal . h>
int sigblock (int mask);

si gbl ock can be defined in terms of the POSIX.1 function si gprocnask using the
S G BLOXK flag—see page 194 for more details.

5 February 2005 02:09

190

sigvec
Si gvec corresponds to the Seventh Edition signal: it sets the disposition of asignal. In addi-
tion, it can block other signals during the processing of asignal.

#i ncl ude <signal . h>
. insignal.his the definition
struct sigvec

{

voi d (*sv_handler) ();
sigset_t sv_nask;

int sv_fl ags;

b

sigvec (int signum struct sigvec *vec, struct sigvec *ovec);

si gnumis the signal whose disposition is to be changed. vec specifi es the new disposition of
the signal, and the function returns the old disposition to ovec.

If vec- >sv_mask is non-zero, it specifi es the signals to block while the signal handler is run-
ning. Thisis logicaly ored with the current signal mask, so it works like an implicit si g-
bl ock on entering the signal handler. On exit from the signal handler, the kernel reinstates
the previous signal mask.

fl ags can consist of:

e SV _ONSTAXK specifi es to take the signal on alternate signal stack, if one has been
defi ned.

e SV I NTERRUPT specifi es that system calls should not be restarted after the signal handler
has completed.

sigvec is amost identical to the POSIX.1 function sigaction described on page
193—only the names of the si gvec structure and its members are different. Note, however,
that the fleg SV_| NTERRUPT has the opposite meaning from the POSIX.1 feg SA RESTART,
which frequently has the same numeric value.

sigpause

si gpause combines the functionality of si gmask and pause: it fi rst sets the signal mask and
then calls pause to wait for a signal to occur.

#i ncl ude <sys/signal . h>
int sigpause (sigset_t signask);
Typical use of BSD signal functions

Most signal coding consists of initialization. Typical programs set the disposition of the sig-
nals in which they are interested during program initialization, and don’'t change them much
after that. For example, with BSD signals you might see code like that in Example 13-2.

Example 13-2:

5 February 2005 02:09

Chapter 13: Signals 191

Example 13—2: (continued)

struct sigvec hupvec = {&up handler, 0, 0}; /* disposition of S GHP */
struct sigvec iovec = {& o _handler, 1 << SSGHUP, O}; /* disposition of SQO*/

sigvec (S GHP, &hupvec, NULL); /* instate handlers for SIGHP, */
sigvec (S A@Q & ovec, NULL); /* 9adqQ */
sigvec (SSGQRG & ovec, NUL); /* and S AQURG */

Occasionally aprocess will usesi gpause, usually to wait for 1/0. In Example 13-3, it blocks
thesignalsSIANTandSIGQU T:

Example 13-3:
sigpause ((1 << SIANN) | (1 < S GQUT)); /* wait for a signal */

System V signal functions

The following signal functions were implemented in System V and are effectively obsolete:
the POSIX.1 functions have replaced them even in System V.3. The syntax of the function
calls is more like the Seventh Edition than POSIX.1. In particular, they do not support the
concept of asignal set. If you do fi nd it necessary to replace System V signals with POSIX.1
signals, there is considerable scope for simplifi cation by merging multiple System V calls
(one per signal) into asingle POSIX.1 call.

sigset
si gset isthe System V reliable equivalent of si gnal :

ncl ude <signal . h>
void (*sigset (int sig, void (*disp) (int))) (int);

Unlike si gnal , the signal is not disabled when the signal handler is executing—instead it is
blocked until the signal handler terminates.

sighold

si ghol d blocks the delivery of signal si g by setting the corresponding bit in the process sig-
nal mask. Semantically this corresponds to the POSIX.1 function si gpr ocmask with the
S G BLOXK flag, but it can block only one signal per call.

#i ncl ude <signal . h>
int sighold (int sig);
sigrelse

si grel se alows the delivery of signal si g by resetting the corresponding bit in the process
signal mask. Semantically this corresponds to the POSIX.1 function si gpr ocnask with the
S G UNBLOXK flag, but it can release only one signal per call.

5 February 2005 02:09

192

#i ncl ude <signal . h>
int sigrelse (int sig);

sigignore
si gi gnor e setsthe disposition of signal si g to SI G | GN—the kernel ignores the signal.

#i ncl ude <signal . h>
int sigignore (int sig);

sigpause

#i ncl ude <signal . h>
int sigpause (int sig);

si gpause enables the delivery of signal si g and then waits for delivery of any signal.
CAUTION Thisis not the same as the BSD function si gpause described on page 190. BSD
si gpause takes a signal mask as an argument, System V si gpause takes a single signal
number. In addition, BSD si gpause only resets the mask temporarily—until the function
return—whereas System V si gpause leavesit in this condition.

Example of System V signal functions

On page 190, we looked at what typical BSD code might look like. The System V equivalent
of this program might perform the initialization in Example 13-4. System V doesn’'t supply
the functionality associated with Sl @ Oand S| QJRG—it uses S| GPCLL instead. See Chapter
14, File systems, pages 209 and 225, for more details of Sl @ Oand S| GPCLL respectively.

Example 13—4:
sigset (S GHUP, &wup_handler); /* instate handlers for S GHP */
sigset (S GAL, & o _handler); /* and S GQPQALL */

System V si gpause has a different syntax, so we need to set the signal mask explicitly with
calsto si ghol d, and a so to release them explicitly with si gr el se

Example 13-5:

sighold (SIANI); /* block SIQ@NT */

sighold (SSGUT); /* and SSGU T */

si gpause (0); /* wait for something to happen */
sigrelse (SSANM); /* unbl ock SIA@NT */

sigrelse (SSGUT); /* and SSGU T */

POSIX.1 signal functions

All modern UNIX implementations claim to support POSIX.1 signals. These are the func-
tions to use if you need to rewrite signal code. They are similar enough to the BSD functions
to be confusing. In particular, the BSD functions pass signal masks as | ongs, whereas the
POSIX.1 functions pass pointers to the signal mask—this enables the number of signals to
exceed the number of bitsin al ong.

Chapter 13: Signals 193

sigaction

si gact i on isthe POSIX.1 equivalent of si gnal . It specifi es the disposition of asignal. In
addition, it can specify a mask of signals to be blocked during the processing of a signal, and
anumber of fbgs whose meaning varies signifi cantly from system to system.

#i ncl ude <signal . h>
struct sigaction

{

voi d (*sa_handl er)(); /* handl er */

si gset _t sa_nask; /* signals to block during processing */
int sa_fl ags;

IS

voi d sigaction (int sig,
const struct sigaction *act,
struct sigaction *oact);

si gnumis the signal whose disposition isto be changed. act specifi es the new disposition of
the signal, and the function returns the old disposition to oact .

If act - >sa_nask is non-zero, it specifi es which signals to block while the signal handler is
running. Thisislogically ored with the current signal mask, so it works like an implicit si g-
bl ock on entering the signal handler.

Here's an overview of the flags:

Table 13—2: si gact i on fegs

Par anet er supported meaning
by
SA ONSTAKK BSD, Sys | Takethesigna on the adternate signal stack, if one has
temV been defi ned. POSIX.1 does not defi ne the concept of

an alternate signal stack—see page 196 for more de-
tails. Linux plans similar functionality with the
SA STAKK flg, but at the time of writing it has not
been implemented.

SA RESETHAND System V Reset the disposition of this signal to SI G DFL when
the handler is entered (simulating Seventh Edition se-
mantics). This is the same as the Linux SA_ ONESHOT
feg.

SA Q\ESHOT Linux Reset the disposition of this signal to SI G DFL when
the handler is entered (simulating Seventh Edition se-
mantics). This is the same as the System V SA RE-
SETHAND flag.

5 February 2005 02:09

194

Table 13—2: si gact i on fegs (continued)

Par anet er supported meaning
by
SA RESTART BSD, Lin- | Restart system calls after the signal handler has com-
ux, System | pleted (see page 186).
V

SA SIA@NFO System V Provide additional parameters to signa handler (see
page 183).

SA NCDEFER System V Don't block this signal while its signal handler is ac-
tive. This means that the signal handler can be called
from a function which it calls, and thus needs to be
reentrant.

SA NOOLDMI T System V Don't create zombie children on Sl GOLD (see page
186).

SA NOOLDSTCP | Linux, Sys- | Don't generate S| GOHLD when a child stops, only

temV when it terminates.

SA NOVASK Linux Disable the signal mask (allow all signals) during the
execution of the signal handler.

SA | NTERRUPT Linux Disable automatic restart of signals. This corresponds
to the SunOS 4 fleg SV | NTERRUPT to si gvec (see
page 190). Currently not implemented.

sigprocmask

si gpr ocnask manipulates the process signal mask. It includes functional modes that corre-

spond to both of the BSD functionssi gbl ock and si gset mask:

#i ncl ude <signal . h>
int sigprocmask (int how const sigset_t *set, sigset_t *oset)

The parameter how determines how the mask is to be manipulated. It can have the following

values:

Table 13—3: sigprocmask functional modes

Par anet er meaning

Sl G BLOXK Create a new signal mask by logically oring the current mask with the speci-
fi ed set.

S G UNBLOXK | Reset the bitsin the current signal mask specifi ed in set .

SI G SETMASK | Replace the current signal mask by set .

5 February 2005 02:09

5 February 2005 02:09

Chapter 13: Signals 195

sigpending

ncl ude <signal . h>
int sigpending (sigset_t *set);

si gpendi ng returns the pending signal mask to set . These are the signals pending delivery
but currently blocked, which will be delivered as soon as the signal mask allows. The return
valueisan error indication and not the signal mask. This function does not have an equivalent
in any other signal implementation

sigsuspend

#i ncl ude <sys/signal . h>
int sigsuspend (const sigset_t *signmask);

si gsuspend temporarily sets the process signal mask to si gnask, and then waits for a sig-
nal. When the signal is received, the previous signal mask is restored on exit from si gsus-
pend. It awaysreturns-1 (error), with er r no set to H NIR (interrupted system call).

Example of POSIX.1 signal functions

On page 190, we looked at a smple example of signal setup, and on page 192 we changed it
for System V. Changing it from BSD to POSIX.1 is mainly a matter of changing the names.
We change the calls to si gvec to si gacti on, and their parameters are now also of type
struct sigactioninstead of struct sigvec.

Unfortunately, there is a problem with this example: POSIX.1 does not defi ne any of the I/O
signals to which this example refers. Thisis not as bad as it sounds, since there are no pure
POSIX.1 systems, and all systems offer either Sl A QS AJRGor S| GPALL. In Example 13-6,
we'll stick with the BSD signals Sl @ Oand SI QARG

Example 13—6:

struct sigaction hupvec = {&wup_handler, 0, 0O}; /* disposition of S GHP */
struct sigaction iovec = {& o_handler, 1 << SSCHWP, 0}; /* disposition of SI@O */

sigaction (Sl GHP, &upvec, NULL); /* instate handlers for SIGHP, */
sigaction (S A@Q & ovec, NULL); /* 9adqQ */

sigaction (SIGRG & ovec, NULL); /* and S AQURG */

si gset _t bl ocknask; /* create a nmask */

si genpt yset (&bl ocknask) ; /* clear signal mask */

si gaddset (&bl ockmask, SI G NI); /* add SSANT to the mask */

si gaddset (&bl ocknmask, SIGU T); /* add SSGU T to the mask */

Example 13-7 shows the corresponding call to sigsuspend:
Example 13-7:

si gsuspend (&bl ocknask) ; /* let the action begin */

WE'll look at si genpt yset and si gaddset in the next section. It's unfortunate that this part
of the initialization looks so complicated—it's just part of the explicit programming style that
POSIX.1 desires. On most systems, you could get the same effect without the calls to
si genpt yset and si gaddset by just defi ning

5 February 2005 02:09

196

int blockmask = (1 << SI@NI) | (1 << SIQUT);
si gpause ((sigset_t *) &bl ockmask); /* let the action begin */

The only problem with this approach (and it’s a showstopper) is that it’s not portable: on a dif-
ferent system, si gset _t might not map toi nt.

Signals under Linux

Linux signals are an implementation of POSIX.1 signals, and we discussed some of the
details in the previous section. In addition, it’s good to know that:

« For compatibility, Sl @ OT is defined as S| GABRT. POSIX.1 does not define Sl G OT.

« As we saw, POSIX.1 does not supply the signals Sl GPCLL, SIA Oand SI QURG Linux
does, but they it maps all three signals to the same numerical value.

« If you really want to, you can simulate unreliable signals under Linux with si gacti on
and the SA ONESHOT flag.

Other signal-related functions

A significant advantage of the BSD and POSIX.1 signal functions over the Seventh Edition
and System V versions is that they have signal set parameters. The down side of signal sets is
that you need to calculate the values of the bits. The following functions are intended to make
manipulating these structures easier. They are usually implemented as macros:

+ sigenptyset (sigset t *set) setsset tothe “empty” signal set—in other words,
it excludes all signals.

« sigfillset (sigset_t *set) setsall valid signals in set .
+ sigaddset (sigset t *set, int signunm) adds signal si gnumto set .
+ sigdel set (sigset_t *set, int signum removes signal si gnumfrom set .

« sigismenber (sigset_t *set, int signum returns 1 if si gnumis setin set and
0 otherwise.

sigstack and sigaltstack

As we have already discussed, a signal is like a forced function call. On modern processors
with stack-oriented hardware, the call uses stack space. In some cases, a signal that arrives at
the wrong time could cause a stack overflow. To avoid this problem, both System V and BSD
(but not POSIX.1) allow you to define a specific signal stack. On receipt of a signal, the stack
is switched to the alternate stack, and on return the original stack is reinstated. This can also
occasionally be of interest in debugging: if a program gets a signal because of a reference
beyond the top of the stack, it’s not much help if the signal destroys the evidence.

BSD supplies the si gst ack system call:

5 February 2005 02:09

Chapter 13: Signals 197

#i ncl ude <sys/signal . h>
struct sigstack

{

caddr_t ss_sp; /* Stack address */

int ss_onst ack; /* Hag, set if currently
* executing on this stack */

b

int sigstack (const struct sigstack *ss, struct sigstack *oss);
« ss maybe NULL. Ifitis not, the process signal stack is set to ss- >ss_sp.

« ss->ss_onstack tells si gstack whether the process is currently executing on the
stack.

« 0ss may also be NLLL. If it is not, information about the current signal stack is returned
to it.

System V supplies the function si gal t st ack:

#i ncl ude <signal . h>
typedef struct

{
char *ss_sp; /* Stack address */
int ss_size; /* Stack size */
int ss_fl ags; /* Flags, see bel ow */
}

stack_t;

int sigaltstack (const stack_t *ss, stack t *oss);

« ss may be NLLL. Ifitis not, the process signal stack is set to ss->ss_sp, and its size is
set to ss- >ss_si ze.

+ 0Ss may also be NILL. If it is not, information about the current signal stack is returned
to it.

« The structure element ss_f | ags may contain the following flags:

+ SS D SABLE specifies that the alternate stack is to be disabled. ss_sp and

ss_si ze are ignored. This flag is also returned in oss when the alternate stack is
disabled.

¢« SS_ONSTAKK (returned) indicates that the process is currently executing on the alter-
nate stack. If this is the case, a modification of the stack is not possible.

setjmp and longjmp

When you return from a function, C language syntax does not give you a choice of where to
return to: you return to the instruction after the call. Occasionally, deep in a series of nested
function calls, you will discover you need to return several levels down the stack—effectively,
you want to perform multiple returns. Standard “structured programming” techniques do not
handle this requirement well, and you can’t just perform a got o to the location, because that
would leave the stack in a mess. The library functions setj np and | ongj np provide this
non-local return.

198

What does this have to do with signals? Nothing, really, except that the receipt of asigna is
one of the most common reasons to want to perform a non-local return: a signal can interrupt
processing anywhere where the process signal mask allowsit. In many cases, the result of the
signal processing is not related to the processing that was interrupted, and it may be necessary
to abort the processing and perform a non-local return. For example, if you are redisplaying
data in an X window and the size of the window changes, you will get a S G/ NCH signal.

This requires a complete recalculation of what needs to be displayed, so there is no point in
continuing the current redisplay operation.

Non-local returns are implemented with the functions setjnp, | ongj np, and friends.
set j np saves the process context and | ongj np restores it—in other words, it returns to the

point in the program where set j np was called. Unlike a normal function return, al ongj np
return may involve discarding a signifi cant part of the stack. There are a number of related
functions:

#incl ude <setjnp. h>

int setjnp (jnp_buf env);

void longjnp (jnp_buf env, int val);

int _setjnp (jnp_buf env);

void _longjnp (jnp_buf env, int val);

voi d | ongj nperror (void);

int sigsetjnp (sigjnp_buf env, int savenask);
voi d siglongjnp (sigjnp_buf env, int val);

The defi nitions of j np_buf and si gj np_buf are less than illuminating: they are just defi ned
asan array of i nt slong enough to contain the information that the system saves. In fact, they

contain the contents of the registers that defi ne the process context—stack pointer, frame

pointer, program counter, and usually a number of other registers.

From the user point of view, set j np is unusual in that it can return more often than you call

it. Initially, you call setj np and it returns the value 0. If it returns again, it's because the

program called | ongj np, and this time it returns the value parameter passed to | ongj np,

which normally should not be 0. The caller can then use this value to determine whether this
isadirect return from set j np, or whether it returned vial ongj np:

int return_code = setjnp (env);

if (return_code)
{ /* non-0 return code: return fromlongjnp */
printf ("longjnp returned %\ n", return_code);

}

These functions are confusing enough in their own right, but they also have less obvious fea-
tures:

e It doesn’'t make any sense for | ongj np to return 0, and System V.4 | ongj np will never
return O, even if you tell it to—it will return 1 instead. BSD | ongj np will return what-
ever you tell it to.

« Theset | np functions save information about the state of the function that called them.
Once this function returns, this information is no longer valid. For example, the

5 February 2005 02:09

5 February 2005 02:09

Chapter 13: Signals 199

following code will not work:

j mp_buf env; /* save area for setjnp */

int nysetjnp ()
{
int a=0;
if (a=setjnp (env))
printf ("Bonbed out\n");
return a;

}

foo ()
{

nysetjnp (), /* catch bad errors */

}
The return instruction from nyset j np to f oo frees its local environment. The memory
which it occupies, and which the call to set j unp saved, will be overwritten by the next
function call, so al ongj np cannot restore it.

+ BSD attempts to determine whether the parameter env to the | ongj np functions is

invalid (such as in the example above). If it detects such an error, it will call | ongj m
perror, which is intended to inform that the | ongj np has failed. If | ongj nperror
returns, the processis aborted.

If | ongj np does not recognize the error, or if the system is not BSD, the resulting
process state is indeterminate. To quote the System V.4 man page: If longjmp is called
even though env was never primed by a call to setjmp, or when the last such call wasin a
function that has since returned, absolute chaos is guaranteed. In fact, the system will
probably generate a Sl GSEGV or a S| GBUS, but the core dump will probably show noth-
ing recognizable.

« Whenl ongj np returnsto the calling function, automatic variables reflect the last modifi -

cations made to them in the function. For example:

int foo ()
{
int a=3;
if (setjnp (env))
{

printf ("a: %\n", a);
return a;
}
a=2
longj np (env, 4);
}
At the point where | ongj np is called, the variable a has the value 2, so this function will
printa: 2.

5 February 2005 02:09

200

* When | ongj np returns to the calling function, register variables will normally have the
values they had at the time of the call to set j np, since they have been saved in the jump
buffer. Since optimizers may reassign automatic variables to registers, this can have con-
fusing results. If you compile the example above with gcc and optimize it, it will print
a: 3. Thisis clearly an unsuitable situation: the solution is to declare a to be volatile
(see Chapter 20, Compilers, page 340 for more information). If we do this, a will aways
have the value 2 after thel ongj np.

* BSD setj np includes the signal mask in the state information it saves, but System V.4
set j np does not save the signal mask. If you want to simulate System V.4 semantics
under BSD, you need to use_set j np and _| ongj np, which do not save the signal mask.
In either system, you can use si gset j np, which saves the signal mask only if save is
non-zero. Except for the type of its fi rst parameter, the corresponding si gl ongj np is
used in exactly the same manner as| ongj np.

e The functions must be paired correctly: if you _setj np, you must _| ongj np, and if you
set j np you must | ongj np.

kill

ki I'l isone of the most badly named system callsin the UNIX system. Itsfunctionisto send
asignal:

ncl ude <signal . h>
int kill (pid_t pid, int sig);

Normally, pi d is the process ID of the process that should receive the signal si g. Therearea
couple of additional tricks, however:

e IfpidisO, the kernel sendssi g to all processes whose process group ID is the same as
the group 1D of the calling process.

e If pi dis-1, most implementations broadcast the signal to all user processes if the signal
is sent by root. Otherwise the signal is sent to all processes with the same effective user
ID. BSD does not broadcast the signal to the calling process, System V does. POSIX.1
does not defi ne this case.

e Ifpidis<-1, Syssem V and BSD broadcast the signal to all processes whose process
group ID isabs (pi d) (abs isthe absolute value function). Again, non-root processes
are limited to sending signals to processes with the same effective user ID. BSD can aso
perform this function with the call ki | | pg.

Another frequent use of ki | | isto check whether a process exists: kil | (pid, 0) will not
actually send a signal, but it will return success if the process exists and an error indication
otherwise.

5 February 2005 02:09

Chapter 13: Signals 201

killpg

ki | | pg broadcasts a signal to all processes whose process group ID isabs (pid). Itissup-
plied with BSD systems:

#i ncl ude <sys/signal . h>

int killpg (pid_t pgrp, int sig);

This function sends the signal to the process group of the specifi ed process, assuming that you
have the same effective user ID as the recipient process, or you are super-user. You can use
pid O to indicate your own process group. If you don’'t have this function, you can possibly
replaceit withki | | (- pgi d) —see the section on kill above.

raise

rai se isan ANS| C function that enables a process to send asignal to itself. It is defi ned as
int raise (int signun;

Older systemsdon’t haver ai se. You can fakeitintermsof ki | | and get pi d:

kill (getpid (), signum;

sys siglist and psigna

At the nameimplies, sys_si gl i st isalist and not afunction. More exactly, it isan array of
signal names, indexed by signal number, and is typically supplied with BSD-derived systems.
For example,

printf ("Signal % (%)\n", S GEGQ/, sys_siglist [SGEQ]);
returns
Sgnal 11 (Segnentation fault)

Some systems supply the function psi gnal instead of sys_si gl i st . It prints the text corre-
sponding to asignal. You can get almost the same effect asthe pri nt f above by writing

char nsg [80];
sprintf (nsg, "Sgnal %", S GEQ);
psignal (S GSEGQV, nsgQ);

This gives the output:

Sgnal 11: Segnentation fault

